» Articles » PMID: 37127711

Uncovering Expression Signatures of Synergistic Drug Responses Via Ensembles of Explainable Machine-learning Models

Overview
Journal Nat Biomed Eng
Publisher Springer Nature
Date 2023 May 1
PMID 37127711
Authors
Affiliations
Soon will be listed here.
Abstract

Machine learning may aid the choice of optimal combinations of anticancer drugs by explaining the molecular basis of their synergy. By combining accurate models with interpretable insights, explainable machine learning promises to accelerate data-driven cancer pharmacology. However, owing to the highly correlated and high-dimensional nature of transcriptomic data, naively applying current explainable machine-learning strategies to large transcriptomic datasets leads to suboptimal outcomes. Here by using feature attribution methods, we show that the quality of the explanations can be increased by leveraging ensembles of explainable machine-learning models. We applied the approach to a dataset of 133 combinations of 46 anticancer drugs tested in ex vivo tumour samples from 285 patients with acute myeloid leukaemia and uncovered a haematopoietic-differentiation signature underlying drug combinations with therapeutic synergy. Ensembles of machine-learning models trained to predict drug combination synergies on the basis of gene-expression data may improve the feature attribution quality of complex machine-learning models.

Citing Articles

Demystifying the black box: A survey on explainable artificial intelligence (XAI) in bioinformatics.

Budhkar A, Song Q, Su J, Zhang X Comput Struct Biotechnol J. 2025; 27:346-359.

PMID: 39897059 PMC: 11782883. DOI: 10.1016/j.csbj.2024.12.027.


Artificial intelligence in drug development.

Zhang K, Yang X, Wang Y, Yu Y, Huang N, Li G Nat Med. 2025; 31(1):45-59.

PMID: 39833407 DOI: 10.1038/s41591-024-03434-4.


Explainable machine learning model for pre-frailty risk assessment in community-dwelling older adults.

Du C, Zhang Z, Liu B, Cao Z, Jiang N, Zhang Z Health Care Sci. 2024; 3(6):426-437.

PMID: 39735284 PMC: 11671213. DOI: 10.1002/hcs2.120.


Advancing cancer nanomedicine with machine learning.

Qin X, Lu T, Pang Z Acta Pharm Sin B. 2024; 14(9):4183-4185.

PMID: 39309501 PMC: 11413671. DOI: 10.1016/j.apsb.2024.06.018.


Learning chemical sensitivity reveals mechanisms of cellular response.

Connell W, Garcia K, Goodarzi H, Keiser M Commun Biol. 2024; 7(1):1149.

PMID: 39278951 PMC: 11402971. DOI: 10.1038/s42003-024-06865-4.


References
1.
Churpek J, Pyrtel K, Kanchi K, Shao J, Koboldt D, Miller C . Genomic analysis of germ line and somatic variants in familial myelodysplasia/acute myeloid leukemia. Blood. 2015; 126(22):2484-90. PMC: 4661171. DOI: 10.1182/blood-2015-04-641100. View

2.
Bzdok D, Engemann D, Thirion B . Inference and Prediction Diverge in Biomedicine. Patterns (N Y). 2020; 1(8):100119. PMC: 7691397. DOI: 10.1016/j.patter.2020.100119. View

3.
Kumar A, Sarver A, Wu B, Kersey J . Meis1 maintains stemness signature in MLL-AF9 leukemia. Blood. 2010; 115(17):3642-3. PMC: 2867272. DOI: 10.1182/blood-2010-01-264564. View

4.
Tyner J, Tognon C, Bottomly D, Wilmot B, Kurtz S, Savage S . Functional genomic landscape of acute myeloid leukaemia. Nature. 2018; 562(7728):526-531. PMC: 6280667. DOI: 10.1038/s41586-018-0623-z. View

5.
Kundu S . AI in medicine must be explainable. Nat Med. 2021; 27(8):1328. DOI: 10.1038/s41591-021-01461-z. View