6.
Takei H, Shinoda J, Ikuta S, Maruyama T, Muragaki Y, Kawasaki T
. Usefulness of positron emission tomography for differentiating gliomas according to the 2016 World Health Organization classification of tumors of the central nervous system. J Neurosurg. 2019; 133(4):1010-1019.
DOI: 10.3171/2019.5.JNS19780.
View
7.
Likavcanova K, Dobrota D, Liptaj T, Pronayova N, Mlynarik V, Belan V
. In vitro study of astrocytic tumour metabolism by proton magnetic resonance spectroscopy. Gen Physiol Biophys. 2005; 24(3):327-35.
View
8.
Lopci E, Riva M, Olivari L, Raneri F, Soffietti R, Piccardo A
. Prognostic value of molecular and imaging biomarkers in patients with supratentorial glioma. Eur J Nucl Med Mol Imaging. 2017; 44(7):1155-1164.
DOI: 10.1007/s00259-017-3618-3.
View
9.
Riva M, Lopci E, Castellano A, Olivari L, Gallucci M, Pessina F
. Lower Grade Gliomas: Relationships Between Metabolic and Structural Imaging with Grading and Molecular Factors. World Neurosurg. 2019; 126:e270-e280.
DOI: 10.1016/j.wneu.2019.02.031.
View
10.
Qi C, Li Y, Fan X, Jiang Y, Wang R, Yang S
. A quantitative SVM approach potentially improves the accuracy of magnetic resonance spectroscopy in the preoperative evaluation of the grades of diffuse gliomas. Neuroimage Clin. 2019; 23:101835.
PMC: 6487359.
DOI: 10.1016/j.nicl.2019.101835.
View
11.
Okita Y, Shofuda T, Kanematsu D, Yoshioka E, Kodama Y, Mano M
. The association between C-methionine uptake, IDH gene mutation, and MGMT promoter methylation in patients with grade II and III gliomas. Clin Radiol. 2020; 75(8):622-628.
DOI: 10.1016/j.crad.2020.03.033.
View
12.
Nakajo K, Uda T, Kawashima T, Terakawa Y, Ishibashi K, Tsuyuguchi N
. Diagnostic Performance of [C]Methionine Positron Emission Tomography in Newly Diagnosed and Untreated Glioma Based on the Revised World Health Organization 2016 Classification. World Neurosurg. 2021; 148:e471-e481.
DOI: 10.1016/j.wneu.2021.01.012.
View
13.
Harada M, Tanouchi M, Nishitani H, Miyoshi H, Bandou K, Kannuki S
. Non-invasive characterization of brain tumor by in-vivo proton magnetic resonance spectroscopy. Jpn J Cancer Res. 1995; 86(3):329-32.
PMC: 5920808.
DOI: 10.1111/j.1349-7006.1995.tb03059.x.
View
14.
Delgado A, Delgado A
. Discrimination between Glioma Grades II and III Using Dynamic Susceptibility Perfusion MRI: A Meta-Analysis. AJNR Am J Neuroradiol. 2017; 38(7):1348-1355.
PMC: 7959917.
DOI: 10.3174/ajnr.A5218.
View
15.
Suh C, Kim H, Jung S, Gon Choi C, Kim S
. 2-Hydroxyglutarate MR spectroscopy for prediction of isocitrate dehydrogenase mutant glioma: a systemic review and meta-analysis using individual patient data. Neuro Oncol. 2018; 20(12):1573-1583.
PMC: 6231199.
DOI: 10.1093/neuonc/noy113.
View
16.
Moller-Hartmann W, Herminghaus S, Krings T, Marquardt G, Lanfermann H, Pilatus U
. Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology. 2002; 44(5):371-81.
DOI: 10.1007/s00234-001-0760-0.
View
17.
Verger A, Stoffels G, Bauer E, Lohmann P, Blau T, Fink G
. Static and dynamic F-FET PET for the characterization of gliomas defined by IDH and 1p/19q status. Eur J Nucl Med Mol Imaging. 2017; 45(3):443-451.
DOI: 10.1007/s00259-017-3846-6.
View
18.
Zhou W, Zhou Z, Wen J, Xie F, Zhu Y, Zhang Z
. A Nomogram Modeling C-MET PET/CT and Clinical Features in Glioma Helps Predict IDH Mutation. Front Oncol. 2020; 10:1200.
PMC: 7396495.
DOI: 10.3389/fonc.2020.01200.
View
19.
Park Y, Han K, Ahn S, Bae S, Choi Y, Chang J
. Prediction of -Mutation and 1p/19q-Codeletion Status Using Preoperative MR Imaging Phenotypes in Lower Grade Gliomas. AJNR Am J Neuroradiol. 2017; 39(1):37-42.
PMC: 7410710.
DOI: 10.3174/ajnr.A5421.
View
20.
Kato T, Shinoda J, Nakayama N, Miwa K, Okumura A, Yano H
. Metabolic assessment of gliomas using 11C-methionine, [18F] fluorodeoxyglucose, and 11C-choline positron-emission tomography. AJNR Am J Neuroradiol. 2008; 29(6):1176-82.
PMC: 8118839.
DOI: 10.3174/ajnr.A1008.
View