» Articles » PMID: 37120609

Perturbation of the Host Cell Ca Homeostasis and ER-mitochondria Contact Sites by the SARS-CoV-2 Structural Proteins E and M

Abstract

Coronavirus disease (COVID-19) is a contagious respiratory disease caused by the SARS-CoV-2 virus. The clinical phenotypes are variable, ranging from spontaneous recovery to serious illness and death. On March 2020, a global COVID-19 pandemic was declared by the World Health Organization (WHO). As of February 2023, almost 670 million cases and 6,8 million deaths have been confirmed worldwide. Coronaviruses, including SARS-CoV-2, contain a single-stranded RNA genome enclosed in a viral capsid consisting of four structural proteins: the nucleocapsid (N) protein, in the ribonucleoprotein core, the spike (S) protein, the envelope (E) protein, and the membrane (M) protein, embedded in the surface envelope. In particular, the E protein is a poorly characterized viroporin with high identity amongst all the β-coronaviruses (SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV-OC43) and a low mutation rate. Here, we focused our attention on the study of SARS-CoV-2 E and M proteins, and we found a general perturbation of the host cell calcium (Ca) homeostasis and a selective rearrangement of the interorganelle contact sites. In vitro and in vivo biochemical analyses revealed that the binding of specific nanobodies to soluble regions of SARS-CoV-2 E protein reversed the observed phenotypes, suggesting that the E protein might be an important therapeutic candidate not only for vaccine development, but also for the clinical management of COVID designing drug regimens that, so far, are very limited.

Citing Articles

SARS-CoV-2 membrane protein induces neurodegeneration via affecting Golgi-mitochondria interaction.

Wang F, Han H, Wang C, Wang J, Peng Y, Chen Y Transl Neurodegener. 2024; 13(1):68.

PMID: 39726060 PMC: 11674522. DOI: 10.1186/s40035-024-00458-1.


Prediction of conformational states in a coronavirus channel using Alphafold-2 and DeepMSA2: Strengths and limitations.

Torres J, Pervushin K, Surya W Comput Struct Biotechnol J. 2024; 23:3730-3740.

PMID: 39525089 PMC: 11543627. DOI: 10.1016/j.csbj.2024.10.021.


SARS-CoV-2 envelope protein alters calcium signaling via SERCA interactions.

Berta B, Tordai H, Lukacs G, Papp B, Enyedi A, Padanyi R Sci Rep. 2024; 14(1):21200.

PMID: 39261533 PMC: 11391011. DOI: 10.1038/s41598-024-71144-5.


Mitochondria in COVID-19: from cellular and molecular perspective.

Rurek M Front Physiol. 2024; 15:1406635.

PMID: 38974521 PMC: 11224649. DOI: 10.3389/fphys.2024.1406635.


Electrophysiological Impact of SARS-CoV-2 Envelope Protein in U251 Human Glioblastoma Cells: Possible Implications in Gliomagenesis?.

Monarca L, Ragonese F, Biagini A, Sabbatini P, Pacini M, Zucchi A Int J Mol Sci. 2024; 25(12).

PMID: 38928376 PMC: 11203726. DOI: 10.3390/ijms25126669.


References
1.
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H . Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020; 395(10224):565-574. PMC: 7159086. DOI: 10.1016/S0140-6736(20)30251-8. View

2.
Ramachandran K, Maity S, Muthukumar A, Kandala S, Tomar D, Abd El-Aziz T . SARS-CoV-2 infection enhances mitochondrial PTP complex activity to perturb cardiac energetics. iScience. 2022; 25(1):103722. PMC: 8720045. DOI: 10.1016/j.isci.2021.103722. View

3.
Surya W, Li Y, Torres J . Structural model of the SARS coronavirus E channel in LMPG micelles. Biochim Biophys Acta Biomembr. 2018; 1860(6):1309-1317. PMC: 7094280. DOI: 10.1016/j.bbamem.2018.02.017. View

4.
Winterstein L, Kukovetz K, Rauh O, Turman D, Braun C, Moroni A . Reconstitution and functional characterization of ion channels from nanodiscs in lipid bilayers. J Gen Physiol. 2018; 150(4):637-646. PMC: 5881443. DOI: 10.1085/jgp.201711904. View

5.
Schoeman D, Fielding B . Coronavirus envelope protein: current knowledge. Virol J. 2019; 16(1):69. PMC: 6537279. DOI: 10.1186/s12985-019-1182-0. View