6.
Miettinen H, Bomberg M, Nyyssonen M, Reunamo A, Jorgensen K, Vikman M
. Oil degradation potential of microbial communities in water and sediment of Baltic Sea coastal area. PLoS One. 2019; 14(7):e0218834.
PMC: 6605675.
DOI: 10.1371/journal.pone.0218834.
View
7.
Lawniczak L, Wozniak-Karczewska M, Loibner A, Heipieper H, Chrzanowski L
. Microbial Degradation of Hydrocarbons-Basic Principles for Bioremediation: A Review. Molecules. 2020; 25(4).
PMC: 7070569.
DOI: 10.3390/molecules25040856.
View
8.
Chapman H, Purnell K, Law R, Kirby M
. The use of chemical dispersants to combat oil spills at sea: A review of practice and research needs in Europe. Mar Pollut Bull. 2007; 54(7):827-38.
DOI: 10.1016/j.marpolbul.2007.03.012.
View
9.
Powell S, Ferguson S, Bowman J, Snape I
. Using real-time PCR to assess changes in the hydrocarbon-degrading microbial community in Antarctic soil during bioremediation. Microb Ecol. 2006; 52(3):523-32.
DOI: 10.1007/s00248-006-9131-z.
View
10.
Johann S, Nusser L, Gossen M, Hollert H, Seiler T
. Differences in biomarker and behavioral responses to native and chemically dispersed crude and refined fossil oils in zebrafish early life stages. Sci Total Environ. 2019; 709:136174.
DOI: 10.1016/j.scitotenv.2019.136174.
View
11.
Overholt W, Marks K, Romero I, Hollander D, Snell T, Kostka J
. Hydrocarbon-Degrading Bacteria Exhibit a Species-Specific Response to Dispersed Oil while Moderating Ecotoxicity. Appl Environ Microbiol. 2015; 82(2):518-27.
PMC: 4711137.
DOI: 10.1128/AEM.02379-15.
View
12.
Dhariwal A, Chong J, Habib S, King I, Agellon L, Xia J
. MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 2017; 45(W1):W180-W188.
PMC: 5570177.
DOI: 10.1093/nar/gkx295.
View
13.
Rial D, Vazquez J, Murado M
. Toxicity of spill-treating agents and oil to sea urchin embryos. Sci Total Environ. 2013; 472:302-8.
DOI: 10.1016/j.scitotenv.2013.11.030.
View
14.
Vergeynst L, Christensen J, Kjeldsen K, Meire L, Boone W, Malmquist L
. In situ biodegradation, photooxidation and dissolution of petroleum compounds in Arctic seawater and sea ice. Water Res. 2018; 148:459-468.
DOI: 10.1016/j.watres.2018.10.066.
View
15.
Parada A, Needham D, Fuhrman J
. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2015; 18(5):1403-14.
DOI: 10.1111/1462-2920.13023.
View
16.
Schloss P, Westcott S, Ryabin T, Hall J, Hartmann M, Hollister E
. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009; 75(23):7537-41.
PMC: 2786419.
DOI: 10.1128/AEM.01541-09.
View
17.
Techtmann S, Zhuang M, Campo P, Holder E, Elk M, Hazen T
. Corexit 9500 Enhances Oil Biodegradation and Changes Active Bacterial Community Structure of Oil-Enriched Microcosms. Appl Environ Microbiol. 2017; 83(10).
PMC: 5411496.
DOI: 10.1128/AEM.03462-16.
View
18.
McFarlin K, Perkins M, Field J, Leigh M
. Biodegradation of Crude Oil and Corexit 9500 in Arctic Seawater. Front Microbiol. 2018; 9:1788.
PMC: 6096335.
DOI: 10.3389/fmicb.2018.01788.
View
19.
Johann S, Esser M, Nusser L, Altin D, Hollert H, Seiler T
. Receptor-mediated estrogenicity of native and chemically dispersed crude oil determined using adapted microscale reporter gene assays. Environ Int. 2019; 134:105320.
DOI: 10.1016/j.envint.2019.105320.
View
20.
Ribicic D, Netzer R, Winkler A, Brakstad O
. Microbial communities in seawater from an Arctic and a temperate Norwegian fjord and their potentials for biodegradation of chemically dispersed oil at low seawater temperatures. Mar Pollut Bull. 2018; 129(1):308-317.
DOI: 10.1016/j.marpolbul.2018.02.024.
View