» Articles » PMID: 37108303

Genetic Research Progress: Heat Tolerance in Rice

Overview
Journal Int J Mol Sci
Publisher MDPI
Date 2023 Apr 28
PMID 37108303
Authors
Affiliations
Soon will be listed here.
Abstract

Heat stress (HS) caused by high-temperature weather seriously threatens international food security. Indeed, as an important food crop in the world, the yield and quality of rice are frequently affected by HS. Therefore, clarifying the molecular mechanism of heat tolerance and cultivating heat-tolerant rice varieties is urgent. Here, we summarized the identified quantitative trait loci (Quantitative Trait Loci, QTL) and cloned rice heat tolerance genes in recent years. We described the plasma membrane (PM) response mechanisms, protein homeostasis, reactive oxygen species (ROS) accumulation, and photosynthesis under HS in rice. We also explained some regulatory mechanisms related to heat tolerance genes. Taken together, we put forward ways to improve heat tolerance in rice, thereby providing new ideas and insights for future research.

Citing Articles

Utilization of doubled haploid breeding approach in introgression of QTL/gene(s) for parental line improvement of hybrid rice.

Bhuyan S, Barik D, Dash B, Rout P, Chandravani M, Baral S J Appl Genet. 2025; .

PMID: 39960583 DOI: 10.1007/s13353-025-00948-6.


How Rice Responds to Temperature Changes and Defeats Heat Stress.

Xing Y, Lu H, Zhu X, Deng Y, Xie Y, Luo Q Rice (N Y). 2024; 17(1):73.

PMID: 39611857 PMC: 11607370. DOI: 10.1186/s12284-024-00748-2.


CRISPR/Cas knockout of the NADPH oxidase gene OsRbohB reduces ROS overaccumulation and enhances heat stress tolerance in rice.

Liu X, Ji P, Liao J, Duan X, Luo Z, Yu X Plant Biotechnol J. 2024; 23(2):336-351.

PMID: 39485884 PMC: 11772341. DOI: 10.1111/pbi.14500.


Triumphs of genomic-assisted breeding in crop improvement.

Mangal V, Verma L, Singh S, Saxena K, Roy A, Karn A Heliyon. 2024; 10(15):e35513.

PMID: 39170454 PMC: 11336775. DOI: 10.1016/j.heliyon.2024.e35513.


contributes to proper alternative splicing under long-term heat stress and mediates variation in the heat tolerance of Arabidopsis.

Isono K, Nakamura K, Hanada K, Shirai K, Ueki M, Tanaka K PNAS Nexus. 2023; 2(11):pgad348.

PMID: 38024403 PMC: 10644991. DOI: 10.1093/pnasnexus/pgad348.


References
1.
Zhang H, Zhou J, Kan Y, Shan J, Ye W, Dong N . A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance. Science. 2022; 376(6599):1293-1300. DOI: 10.1126/science.abo5721. View

2.
Lobell D, Schlenker W, Costa-Roberts J . Climate trends and global crop production since 1980. Science. 2011; 333(6042):616-20. DOI: 10.1126/science.1204531. View

3.
Welch J, Vincent J, Auffhammer M, Moya P, Dobermann A, Dawe D . Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proc Natl Acad Sci U S A. 2010; 107(33):14562-7. PMC: 2930450. DOI: 10.1073/pnas.1001222107. View

4.
Arshad M, Farooq M, Asch F, Krishna J, Prasad P, Siddique K . Thermal stress impacts reproductive development and grain yield in rice. Plant Physiol Biochem. 2017; 115:57-72. DOI: 10.1016/j.plaphy.2017.03.011. View

5.
Camejo D, Rodriguez P, Morales M, DellAmico J, Torrecillas A, Alarcon J . High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J Plant Physiol. 2005; 162(3):281-9. DOI: 10.1016/j.jplph.2004.07.014. View