6.
Gnana Kumar G, Hashmi S, Karthikeyan C, GhavamiNejad A, Vatankhah-Varnoosfaderani M, Stadler F
. Graphene oxide/carbon nanotube composite hydrogels-versatile materials for microbial fuel cell applications. Macromol Rapid Commun. 2014; 35(21):1861-5.
DOI: 10.1002/marc.201400332.
View
7.
Horii A, Wang X, Gelain F, Zhang S
. Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration. PLoS One. 2007; 2(2):e190.
PMC: 1784071.
DOI: 10.1371/journal.pone.0000190.
View
8.
Terech P, Weiss R
. Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels. Chem Rev. 2002; 97(8):3133-3160.
DOI: 10.1021/cr9700282.
View
9.
Lin Y, Li L, Li G
. A new supramolecular gel via host-guest complexation with cucurbit[8]uril and N-(4-diethylaminobenzyl)chitosan. Carbohydr Polym. 2012; 92(1):429-34.
DOI: 10.1016/j.carbpol.2012.09.027.
View
10.
Wu Q, Wei J, Xu B, Liu X, Wang H, Wang W
. A robust, highly stretchable supramolecular polymer conductive hydrogel with self-healability and thermo-processability. Sci Rep. 2017; 7:41566.
PMC: 5278500.
DOI: 10.1038/srep41566.
View
11.
Diehn K, Oh H, Hashemipour R, Weiss R, Raghavan S
. Insights into organogelation and its kinetics from Hansen solubility parameters. Toward a priori predictions of molecular gelation. Soft Matter. 2014; 10(15):2632-40.
DOI: 10.1039/c3sm52297k.
View
12.
Ali Darabi M, Khosrozadeh A, Mbeleck R, Liu Y, Chang Q, Jiang J
. Skin-Inspired Multifunctional Autonomic-Intrinsic Conductive Self-Healing Hydrogels with Pressure Sensitivity, Stretchability, and 3D Printability. Adv Mater. 2017; 29(31).
DOI: 10.1002/adma.201700533.
View
13.
Panja S, Adams D
. Stimuli responsive dynamic transformations in supramolecular gels. Chem Soc Rev. 2021; 50(8):5165-5200.
DOI: 10.1039/d0cs01166e.
View
14.
Zhang M, Selvakumar S, Zhang X, Sibi M, Weiss R
. Structural and solubility parameter correlations of gelation abilities for dihydroxylated derivatives of long-chain, naturally occurring fatty acids. Chemistry. 2015; 21(23):8530-43.
DOI: 10.1002/chem.201500096.
View
15.
Ashwanikumar N, Kumar N, Saneesh Babu P, Sivakumar K, Vadakkan M, Nair P
. Self-assembling peptide nanofibers containing phenylalanine for the controlled release of 5-fluorouracil. Int J Nanomedicine. 2016; 11:5583-5594.
PMC: 5087806.
DOI: 10.2147/IJN.S104707.
View
16.
Lee J, Aida T
. "Bucky gels" for tailoring electroactive materials and devices: the composites of carbon materials with ionic liquids. Chem Commun (Camb). 2011; 47(24):6757-62.
DOI: 10.1039/c1cc00043h.
View
17.
Boland C, Khan U, Ryan G, Barwich S, Charifou R, Harvey A
. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science. 2016; 354(6317):1257-1260.
DOI: 10.1126/science.aag2879.
View
18.
Nunes D, Raynal M, Isare B, Albouy P, Bouteiller L
. Organogel formation rationalized by Hansen solubility parameters: improved methodology. Soft Matter. 2018; 14(23):4805-4809.
DOI: 10.1039/c8sm00562a.
View
19.
Diring S, Camerel F, Donnio B, Dintzer T, Toffanin S, Capelli R
. Luminescent ethynyl-pyrene liquid crystals and gels for optoelectronic devices. J Am Chem Soc. 2009; 131(50):18177-85.
DOI: 10.1021/ja908061q.
View
20.
Christoff-Tempesta T, Lew A, Ortony J
. Beyond Covalent Crosslinks: Applications of Supramolecular Gels. Gels. 2019; 4(2).
PMC: 6209248.
DOI: 10.3390/gels4020040.
View