» Articles » PMID: 37102142

Atmospheric- and Low-Level Methane Abatement an Earth-Abundant Catalyst

Overview
Journal ACS Environ Au
Date 2023 Apr 27
PMID 37102142
Authors
Affiliations
Soon will be listed here.
Abstract

Climate action scenarios that limit changes in global temperature to less than 1.5 °C require methane controls, yet there are no abatement technologies effective for the treatment of low-level methane. Here, we describe the use of a biomimetic copper zeolite capable of converting atmospheric- and low-level methane at relatively low temperatures (, 200-300 °C) in simulated air. Depending on the duty cycle, 40%, over 60%, or complete conversion could be achieved ( a two-step process at 450 °C activation and 200 °C reaction or a short and long activation under isothermal 310 °C conditions, respectively). Improved performance at longer activation was attributed to active site evolution, as determined by X-ray diffraction. The conversion rate increased over a range of methane concentrations (0.00019-2%), indicating the potential to abate methane from any sub-flammable stream. Finally, the uncompromised catalyst turnover for 300 h in simulated air illustrates the promise of using low-cost, earth-abundant materials to mitigate methane and slow the pace of climate change.

Citing Articles

Direct Methane to Methanol Conversion: An Overview of Non-Syn Gas Catalytic Strategies.

Rajeev A, Mohammed T, George A, Sankaralingam M Chem Rec. 2025; :e202400186.

PMID: 39817884 PMC: 11811604. DOI: 10.1002/tcr.202400186.


Spectroscopic Investigation of the Role of Water in Copper Zeolite Methane Oxidation.

Heyer A, Ma J, Plessers D, Braun A, Bols M, Rhoda H J Am Chem Soc. 2024; 146(31):21208-21213.

PMID: 39046226 PMC: 11808935. DOI: 10.1021/jacs.4c06010.


Magnetic Exchange Coupling in Zeolite Copper Dimers and Its Contribution to Methane Activation.

Heyer A, Plessers D, Ma J, Snyder B, Schoonheydt R, Sels B J Am Chem Soc. 2024; 146(9):6061-6071.

PMID: 38385349 PMC: 11285328. DOI: 10.1021/jacs.3c13295.


Screening Cu-Zeolites for Methane Activation Using Curriculum-Based Training.

Guo J, Sours T, Holton S, Sun C, Kulkarni A ACS Catal. 2024; 14(3):1232-1242.

PMID: 38327646 PMC: 10845107. DOI: 10.1021/acscatal.3c05275.


Photocatalytic Conversion of Methane: Current State of the Art, Challenges, and Future Perspectives.

Liu Z, Xu B, Jiang Y, Zhou Y, Sun X, Wang Y ACS Environ Au. 2023; 3(5):252-276.

PMID: 37743954 PMC: 10515711. DOI: 10.1021/acsenvironau.3c00002.


References
1.
Sushkevich V, Palagin D, Ranocchiari M, van Bokhoven J . Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science. 2017; 356(6337):523-527. DOI: 10.1126/science.aam9035. View

2.
Petrov A, Ferri D, Krumeich F, Nachtegaal M, van Bokhoven J, Krocher O . Stable complete methane oxidation over palladium based zeolite catalysts. Nat Commun. 2018; 9(1):2545. PMC: 6026177. DOI: 10.1038/s41467-018-04748-x. View

3.
Narsimhan K, Iyoki K, Dinh K, Roman-Leshkov Y . Catalytic Oxidation of Methane into Methanol over Copper-Exchanged Zeolites with Oxygen at Low Temperature. ACS Cent Sci. 2016; 2(6):424-9. PMC: 4919767. DOI: 10.1021/acscentsci.6b00139. View

4.
Steiner 3rd S, Baumann T, Bayer B, Blume R, Worsley M, Moberlychan W . Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes. J Am Chem Soc. 2009; 131(34):12144-54. DOI: 10.1021/ja902913r. View

5.
Haque M . Dietary manipulation: a sustainable way to mitigate methane emissions from ruminants. J Anim Sci Technol. 2018; 60:15. PMC: 6004689. DOI: 10.1186/s40781-018-0175-7. View