Anti-Inflammatory Effects of New Naphthyridine from Sponge Aaptos Suberitoides in LPS-Stimulated RAW 264.7 Macrophages Via Regulation of MAPK and Nrf2 Signaling Pathways
Overview
Affiliations
Two new naphthyridine compounds, 4-methoxycarbonyl-5-oxo-1,6-naphthyridine (1) and 5-methoxycarbonyl-4-oxo-1,6-naphthyridine (2) were obtained from the MeOH extracts of sponge Aaptos suberitoides. Their structures were determined by spectroscopic methods, including HR-ESI-MS, 1D-NMR ( H-NMR, C-NMR), 2D-NMR (COSY, HSQC, HMBC). The structure of compound 1 was further confirmed via single crystal X-ray diffraction analysis. Compound 1 was found to reduce NO production in LPS-induced RAW 264.7 macrophages with IC value of 0.15 mM. In addition, it decreased the mRNA expression levels of pro-inflammatory mediators, such as the tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2) in LPS-induced macrophages. It also decreased the protein expression of iNOS and COX-2 in LPS-induced macrophages. Mechanistic studies further revealed that compound 1 inhibited the mitogen-activated protein kinase (MAPK), and activated the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) signaling pathways in LPS-induced RAW 264.7 macrophages.
The Effects of 2-Hydroxy-3,6-Dimethoxychalcone on Melanogenesis and Inflammation.
Bae S, Hyun C Int J Mol Sci. 2023; 24(12).
PMID: 37373541 PMC: 10299152. DOI: 10.3390/ijms241210393.