A Twist-Box Domain of the C. Elegans Twist Homolog, HLH-8, Plays a Complex Role in Transcriptional Regulation
Overview
Affiliations
TWIST1 is a basic helix-loop-helix (bHLH) transcription factor in humans that functions in mesoderm differentiation. TWIST1 primarily regulates genes as a transcriptional repressor often through TWIST-Box domain-mediated protein-protein interactions. The TWIST-Box also can function as an activation domain requiring 3 conserved, equidistant amino acids (LXXXFXXXR). Autosomal dominant mutations in TWIST1, including 2 reported in these conserved amino acids (F187L and R191M), lead to craniofacial defects in Saethre-Chotzen syndrome (SCS). Caenorhabditis elegans has a single TWIST1 homolog, HLH-8, that functions in the differentiation of the muscles responsible for egg laying and defecation. Null alleles in hlh-8 lead to severely egg-laying defective and constipated animals due to defects in the corresponding muscles. TWIST1 and HLH-8 share sequence identity in their bHLH regions; however, the domain responsible for the transcriptional activity of HLH-8 is unknown. Sequence alignment suggests that HLH-8 has a TWIST-Box LXXXFXXXR motif; however, its function also is unknown. CRISPR/Cas9 genome editing was utilized to generate a domain deletion and several missense mutations, including those analogous to SCS patients, in the 3 conserved HLH-8 amino acids to investigate their functional role. The TWIST-Box alleles did not phenocopy hlh-8 null mutants. The strongest phenotype detected was a retentive (Ret) phenotype with late-stage embryos in the hermaphrodite uterus. Further, GFP reporters of HLH-8 downstream target genes (arg-1::gfp and egl-15::gfp) revealed tissue-specific, target-specific, and allele-specific defects. Overall, the TWIST-Box in HLH-8 is partially required for the protein's transcriptional activity, and the conserved amino acids contribute unequally to the domain's function.
SEM-2/SoxC regulates multiple aspects of C. elegans postembryonic mesoderm development.
Baccas M, Ganesan V, Leung A, Pineiro L, McKillop A, Liu J PLoS Genet. 2025; 21(1):e1011361.
PMID: 39836649 PMC: 11785321. DOI: 10.1371/journal.pgen.1011361.
SEM-2/SoxC regulates multiple aspects of postembryonic mesoderm development.
Baccas M, Ganesan V, Leung A, Pineiro L, McKillop A, Liu J bioRxiv. 2024; .
PMID: 39005444 PMC: 11245110. DOI: 10.1101/2024.07.04.602042.
Highlighting rare disease research with a GENETICS and G3 series on genetic models of rare diseases.
Hieter P, Andrews B, Fowler D, Bellen H G3 (Bethesda). 2023; 13(8).
PMID: 37556359 PMC: 10411584. DOI: 10.1093/g3journal/jkad144.
Highlighting rare disease research with a GENETICS and G3 series on genetic models of rare diseases.
Hieter P, Andrews B, Fowler D, Bellen H Genetics. 2023; 224(4).
PMID: 37556311 PMC: 10411596. DOI: 10.1093/genetics/iyad121.