6.
He Q, Szczepanska P, Yuzbashev T, Lazar Z, Ledesma-Amaro R
. De novo production of resveratrol from glycerol by engineering different metabolic pathways in . Metab Eng Commun. 2020; 11:e00146.
PMC: 7522117.
DOI: 10.1016/j.mec.2020.e00146.
View
7.
Larroude M, Park Y, Soudier P, Kubiak M, Nicaud J, Rossignol T
. A modular Golden Gate toolkit for Yarrowia lipolytica synthetic biology. Microb Biotechnol. 2019; 12(6):1249-1259.
PMC: 6801146.
DOI: 10.1111/1751-7915.13427.
View
8.
Adames N, Gallegos J, Peccoud J
. Yeast genetic interaction screens in the age of CRISPR/Cas. Curr Genet. 2018; 65(2):307-327.
PMC: 6420903.
DOI: 10.1007/s00294-018-0887-8.
View
9.
Park Y, Ledesma-Amaro R
. What makes Yarrowia lipolytica well suited for industry?. Trends Biotechnol. 2022; 41(2):242-254.
DOI: 10.1016/j.tibtech.2022.07.006.
View
10.
Schmaler-Ripcke J, Sugareva V, Gebhardt P, Winkler R, Kniemeyer O, Heinekamp T
. Production of pyomelanin, a second type of melanin, via the tyrosine degradation pathway in Aspergillus fumigatus. Appl Environ Microbiol. 2008; 75(2):493-503.
PMC: 2620705.
DOI: 10.1128/AEM.02077-08.
View
11.
Li Y, Yang C, Shen Q, Peng Q, Guo Q, Nie Z
. YALIcloneNHEJ: An Efficient Modular Cloning Toolkit for NHEJ Integration of Multigene Pathway and Terpenoid Production in . Front Bioeng Biotechnol. 2022; 9:816980.
PMC: 8924588.
DOI: 10.3389/fbioe.2021.816980.
View
12.
Brady J, Tan M, Whittaker C, Colant N, Dalvie N, Love K
. Identifying Improved Sites for Heterologous Gene Integration Using ATAC-seq. ACS Synth Biol. 2020; 9(9):2515-2524.
PMC: 7506950.
DOI: 10.1021/acssynbio.0c00299.
View
13.
Liu Q, Shi X, Song L, Liu H, Zhou X, Wang Q
. CRISPR-Cas9-mediated genomic multiloci integration in Pichia pastoris. Microb Cell Fact. 2019; 18(1):144.
PMC: 6704636.
DOI: 10.1186/s12934-019-1194-x.
View
14.
Babaei M, Kildegaard K, Niaei A, Hosseini M, Ebrahimi S, Sudarsan S
. Engineering Oleaginous Yeast as the Host for Fermentative Succinic Acid Production From Glucose. Front Bioeng Biotechnol. 2019; 7:361.
PMC: 6892388.
DOI: 10.3389/fbioe.2019.00361.
View
15.
Li X, Jun Y, Erickstad M, Brown S, Parks A, Court D
. tCRISPRi: tunable and reversible, one-step control of gene expression. Sci Rep. 2016; 6:39076.
PMC: 5171832.
DOI: 10.1038/srep39076.
View
16.
Egermeier M, Sauer M, Marx H
. Golden Gate-based metabolic engineering strategy for wild-type strains of Yarrowia lipolytica. FEMS Microbiol Lett. 2019; 366(4).
DOI: 10.1093/femsle/fnz022.
View
17.
Ben Tahar I, Kus-Liskiewicz M, Lara Y, Javaux E, Fickers P
. Characterization of a nontoxic pyomelanin pigment produced by the yeast Yarrowia lipolytica. Biotechnol Prog. 2019; 36(2):e2912.
DOI: 10.1002/btpr.2912.
View
18.
Shen B, Zhou P, Jiao X, Yao Z, Ye L, Yu H
. Fermentative production of Vitamin E tocotrienols in Saccharomyces cerevisiae under cold-shock-triggered temperature control. Nat Commun. 2020; 11(1):5155.
PMC: 7560618.
DOI: 10.1038/s41467-020-18958-9.
View
19.
Laughery M, Hunter T, Brown A, Hoopes J, Ostbye T, Shumaker T
. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae. Yeast. 2015; 32(12):711-20.
PMC: 4715497.
DOI: 10.1002/yea.3098.
View
20.
Schwartz C, Hussain M, Blenner M, Wheeldon I
. Synthetic RNA Polymerase III Promoters Facilitate High-Efficiency CRISPR-Cas9-Mediated Genome Editing in Yarrowia lipolytica. ACS Synth Biol. 2015; 5(4):356-9.
DOI: 10.1021/acssynbio.5b00162.
View