» Articles » PMID: 37065716

Quo Vadis Carbanionic Polymerization?

Overview
Journal ACS Polym Au
Date 2023 Apr 17
PMID 37065716
Authors
Affiliations
Soon will be listed here.
Abstract

Living anionic polymerization will soon celebrate 70 years of existence. This living polymerization is considered the mother of all living and controlled/living polymerizations since it paved the way for their discovery. It provides methodologies for synthesizing polymers with absolute control of the essential parameters that affect polymer properties, including molecular weight, molecular weight distribution, composition and microstructure, chain-end/in-chain functionality, and architecture. This precise control of living anionic polymerization generated tremendous fundamental and industrial research activities, developing numerous important commodity and specialty polymers. In this Perspective, we present the high importance of living anionic polymerization of vinyl monomers by providing some examples of its significant achievements, presenting its current status, giving several insights into where it is going (Quo Vadis) and what the future holds for this powerful synthetic method. Furthermore, we attempt to explore its advantages and disadvantages compared to controlled/living radical polymerizations, the main competitors of living carbanionic polymerization.

Citing Articles

Proton Transfer Anionic Polymerization of Methyl Methacrylate with Ligands for Dual Control of Molecular Weight and Tacticity.

Sagawa K, Uchiyama M, Watanabe H, Homma C, Kamigaito M Precis Chem. 2024; 2(12):628-633.

PMID: 39734757 PMC: 11672533. DOI: 10.1021/prechem.4c00066.


Proton transfer anionic polymerization with C-H bond as the dormant species.

Uchiyama M, Ohira N, Yamashita K, Sagawa K, Kamigaito M Nat Chem. 2024; 16(10):1630-1637.

PMID: 38965437 DOI: 10.1038/s41557-024-01572-3.


Recent Developments on Cationic Polymerization of Vinyl Ethers.

Singha S, Pan S, Tallury S, Nguyen G, Tripathy R, De P ACS Polym Au. 2024; 4(3):189-207.

PMID: 38882029 PMC: 11177306. DOI: 10.1021/acspolymersau.3c00055.


Synthesis and Characterization of Graft Copolymers with Poly(ε-caprolactone) Side Chain Using Hydroxylated Poly(β-myrcene--α-methyl styrene).

Li T, Zhang M, He J, Ni P Molecules. 2024; 29(10).

PMID: 38792224 PMC: 11124195. DOI: 10.3390/molecules29102363.


Living/Controlled Anionic Polymerization of Glycolide in Fluoroalcohols: Toward Sustainable Bioplastics.

Zhang P, Ladelta V, Hadjichristidis N J Am Chem Soc. 2023; 145(27):14756-14765.

PMID: 37382584 PMC: 10347546. DOI: 10.1021/jacs.3c03253.

References
1.
Cintora A, Takano H, Khurana M, Chandra A, Hayakawa T, Ober C . Block copolymers containing stable radical and fluorinated blocks with long-range ordered morphologies prepared by anionic polymerization. Polym Chem. 2019; 10(37):5094-5102. PMC: 6919551. DOI: 10.1039/c9py00416e. View

2.
Hadjichristidis N, Pitsikalis M, Pispas S, Iatrou H . Polymers with complex architecture by living anionic polymerization. Chem Rev. 2001; 101(12):3747-92. DOI: 10.1021/cr9901337. View

3.
Hampu N, Werber J, Chan W, Feinberg E, Hillmyer M . Next-Generation Ultrafiltration Membranes Enabled by Block Polymers. ACS Nano. 2020; 14(12):16446-16471. DOI: 10.1021/acsnano.0c07883. View

4.
Polymeropoulos G, Bilalis P, Hadjichristidis N . Well-Defined Cyclic Triblock Terpolymers: A Missing Piece of the Morphology Puzzle. ACS Macro Lett. 2022; 5(11):1242-1246. DOI: 10.1021/acsmacrolett.6b00807. View

5.
Sai H, Tan K, Hur K, Asenath-Smith E, Hovden R, Jiang Y . Hierarchical porous polymer scaffolds from block copolymers. Science. 2013; 341(6145):530-4. DOI: 10.1126/science.1238159. View