» Articles » PMID: 37055393

Histopathology Images Predict Multi-omics Aberrations and Prognoses in Colorectal Cancer Patients

Abstract

Histopathologic assessment is indispensable for diagnosing colorectal cancer (CRC). However, manual evaluation of the diseased tissues under the microscope cannot reliably inform patient prognosis or genomic variations crucial for treatment selections. To address these challenges, we develop the Multi-omics Multi-cohort Assessment (MOMA) platform, an explainable machine learning approach, to systematically identify and interpret the relationship between patients' histologic patterns, multi-omics, and clinical profiles in three large patient cohorts (n = 1888). MOMA successfully predicts the overall survival, disease-free survival (log-rank test P-value<0.05), and copy number alterations of CRC patients. In addition, our approaches identify interpretable pathology patterns predictive of gene expression profiles, microsatellite instability status, and clinically actionable genetic alterations. We show that MOMA models are generalizable to multiple patient populations with different demographic compositions and pathology images collected from distinctive digitization methods. Our machine learning approaches provide clinically actionable predictions that could inform treatments for colorectal cancer patients.

Citing Articles

Artificial intelligence in digital pathology - time for a reality check.

Aggarwal A, Bharadwaj S, Corredor G, Pathak T, Badve S, Madabhushi A Nat Rev Clin Oncol. 2025; .

PMID: 39934323 DOI: 10.1038/s41571-025-00991-6.


AI-based prediction of androgen receptor expression and its prognostic significance in prostate cancer.

Zhang J, Ding F, Guo Y, Wei X, Jing J, Xu F Sci Rep. 2025; 15(1):3985.

PMID: 39893198 PMC: 11787347. DOI: 10.1038/s41598-025-88199-7.


Convergence of evolving artificial intelligence and machine learning techniques in precision oncology.

Fountzilas E, Pearce T, Baysal M, Chakraborty A, Tsimberidou A NPJ Digit Med. 2025; 8(1):75.

PMID: 39890986 PMC: 11785769. DOI: 10.1038/s41746-025-01471-y.


A generative deep neural network for pan-digestive tract cancer survival analysis.

Xu L, Lan T, Huang Y, Wang L, Lin J, Song X BioData Min. 2025; 18(1):9.

PMID: 39871331 PMC: 11771125. DOI: 10.1186/s13040-025-00426-z.


GJFocuser: a Gaussian difference and joint learning-based autofocus method for whole slide imaging.

Chen W, Li C, Huang Z, Wang Z Biomed Opt Express. 2025; 16(1):282-302.

PMID: 39816138 PMC: 11729290. DOI: 10.1364/BOE.547119.


References
1.
Tizhoosh H, Pantanowitz L . Artificial Intelligence and Digital Pathology: Challenges and Opportunities. J Pathol Inform. 2019; 9:38. PMC: 6289004. DOI: 10.4103/jpi.jpi_53_18. View

2.
Castelvecchi D . Can we open the black box of AI?. Nature. 2016; 538(7623):20-23. DOI: 10.1038/538020a. View

3.
Guinney J, Dienstmann R, Wang X, De Reynies A, Schlicker A, Soneson C . The consensus molecular subtypes of colorectal cancer. Nat Med. 2015; 21(11):1350-6. PMC: 4636487. DOI: 10.1038/nm.3967. View

4.
Yu K, Wang F, Berry G, Re C, Altman R, Snyder M . Classifying non-small cell lung cancer types and transcriptomic subtypes using convolutional neural networks. J Am Med Inform Assoc. 2020; 27(5):757-769. PMC: 7309263. DOI: 10.1093/jamia/ocz230. View

5.
Yu K, Beam A, Kohane I . Artificial intelligence in healthcare. Nat Biomed Eng. 2019; 2(10):719-731. DOI: 10.1038/s41551-018-0305-z. View