» Articles » PMID: 37041545

A Nomogram Model Based on Pre-treatment and Post-treatment MR Imaging Radiomics Signatures: Application to Predict Progression-free Survival for Nasopharyngeal Carcinoma

Overview
Journal Radiat Oncol
Publisher Biomed Central
Specialties Oncology
Radiology
Date 2023 Apr 11
PMID 37041545
Authors
Affiliations
Soon will be listed here.
Abstract

Background: To establish a novel model using radiomics analysis of pre-treatment and post-treatment magnetic resonance (MR) images for prediction of progression-free survival in the patients with stage II-IVA nasopharyngeal carcinoma (NPC) in South China.

Methods: One hundred and twenty NPC patients who underwent chemoradiotherapy were enrolled (80 in the training cohort and 40 in the validation cohort). Acquiring data and screening features were performed successively. Totally 1133 radiomics features were extracted from the T2-weight images before and after treatment. Least absolute shrinkage and selection operator regression, recursive feature elimination algorithm, random forest, and minimum-redundancy maximum-relevancy (mRMR) method were used for feature selection. Nomogram discrimination and calibration were evaluated. Harrell's concordance index (C-index) and receiver operating characteristic (ROC) analyses were applied to appraise the prognostic performance of nomograms. Survival curves were plotted using Kaplan-Meier method.

Results: Integrating independent clinical predictors with pre-treatment and post-treatment radiomics signatures which were calculated in conformity with radiomics features, we established a clinical-and-radiomics nomogram by multivariable Cox regression. Nomogram consisting of 14 pre-treatment and 7 post-treatment selected features has been proved to yield a reliable predictive performance in both training and validation groups. The C-index of clinical-and-radiomics nomogram was 0.953 (all P < 0.05), which was higher than that of clinical (0.861) or radiomics nomograms alone (based on pre-treatment statistics: 0.942; based on post-treatment statistics: 0.944). Moreover, we received Rad-score of pre-treatment named RS1 and post-treatment named RS2 and all were used as independent predictors to divide patients into high-risk and low-risk groups. Kaplan-Meier analysis showed that lower RS1 (less than cutoff value, - 1.488) and RS2 (less than cutoff value, - 0.180) were easier to avoid disease progression (all P < 0.01). It showed clinical benefit with decision curve analysis.

Conclusions: MR-based radiomics measured the burden on primary tumor before treatment and the tumor regression after chemoradiotherapy, and was used to build a model to predict progression-free survival (PFS) in the stage II-IVA NPC patients. It can also help to distinguish high-risk patients from low-risk patients, thus guiding personalized treatment decisions effectively.

Citing Articles

An interpretable machine learning model assists in predicting induction chemotherapy response and survival for locoregionally advanced nasopharyngeal carcinoma using MRI: a multicenter study.

Liao H, Zhao Y, Pei W, Huang X, Huang S, Wei W Eur Radiol. 2025; .

PMID: 39930128 DOI: 10.1007/s00330-025-11396-5.


Dual-Time-Point Radiomics for Prognosis Prediction in Colorectal Liver Metastasis Treated with Neoadjuvant Therapy Before Radical Resection: A Two-Center Study.

Li Z, Zhang J, Tian S, Sun C, Ma Y, Ye Z Ann Surg Oncol. 2025; .

PMID: 39907877 DOI: 10.1245/s10434-025-16941-6.


Deciphering the Prognostic Efficacy of MRI Radiomics in Nasopharyngeal Carcinoma: A Comprehensive Meta-Analysis.

Wang C, Wang T, Lu C, Wu Y, Hua M Diagnostics (Basel). 2024; 14(9).

PMID: 38732337 PMC: 11082984. DOI: 10.3390/diagnostics14090924.


Enhancing Nasopharyngeal Carcinoma Survival Prediction: Integrating Pre- and Post-Treatment MRI Radiomics with Clinical Data.

Dang L, Hung S, Le N, Chuang W, Wu J, Huang T J Imaging Inform Med. 2024; 37(5):2474-2489.

PMID: 38689151 PMC: 11522233. DOI: 10.1007/s10278-024-01109-7.

References
1.
Huang Y, Liu Z, He L, Chen X, Pan D, Ma Z . Radiomics Signature: A Potential Biomarker for the Prediction of Disease-Free Survival in Early-Stage (I or II) Non-Small Cell Lung Cancer. Radiology. 2016; 281(3):947-957. DOI: 10.1148/radiol.2016152234. View

2.
Pinker K, Andrzejewski P, Baltzer P, Polanec S, Sturdza A, Georg D . Multiparametric [18F]Fluorodeoxyglucose/ [18F]Fluoromisonidazole Positron Emission Tomography/ Magnetic Resonance Imaging of Locally Advanced Cervical Cancer for the Non-Invasive Detection of Tumor Heterogeneity: A Pilot Study. PLoS One. 2016; 11(5):e0155333. PMC: 4864307. DOI: 10.1371/journal.pone.0155333. View

3.
Sun X, Su S, Chen C, Han F, Zhao C, Xiao W . Long-term outcomes of intensity-modulated radiotherapy for 868 patients with nasopharyngeal carcinoma: an analysis of survival and treatment toxicities. Radiother Oncol. 2013; 110(3):398-403. DOI: 10.1016/j.radonc.2013.10.020. View

4.
Sung H, Ferlay J, Siegel R, Laversanne M, Soerjomataram I, Jemal A . Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021; 71(3):209-249. DOI: 10.3322/caac.21660. View

5.
Huang Y, Liang C, He L, Tian J, Liang C, Chen X . Development and Validation of a Radiomics Nomogram for Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer. J Clin Oncol. 2016; 34(18):2157-64. DOI: 10.1200/JCO.2015.65.9128. View