6.
Druhan J, Steefel C, Molins S, Williams K, Conrad M, DePaolo D
. Timing the onset of sulfate reduction over multiple subsurface acetate amendments by measurement and modeling of sulfur isotope fractionation. Environ Sci Technol. 2012; 46(16):8895-902.
DOI: 10.1021/es302016p.
View
7.
Nghiem A, Shen Y, Stahl M, Sun J, Haque E, DeYoung B
. Aquifer-Scale Observations of Iron Redox Transformations in Arsenic-Impacted Environments to Predict Future Contamination. Environ Sci Technol Lett. 2021; 7(12):916-922.
PMC: 7886273.
DOI: 10.1021/acs.estlett.0c00672.
View
8.
Islam F, Gault A, Boothman C, Polya D, Charnock J, Chatterjee D
. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature. 2004; 430(6995):68-71.
DOI: 10.1038/nature02638.
View
9.
Canfield D, Stewart F, Thamdrup B, De Brabandere L, Dalsgaard T, DeLong E
. A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science. 2010; 330(6009):1375-8.
DOI: 10.1126/science.1196889.
View
10.
Planer-Friedrich B, Suess E, Scheinost A, Wallschlager D
. Arsenic speciation in sulfidic waters: reconciling contradictory spectroscopic and chromatographic evidence. Anal Chem. 2010; 82(24):10228-35.
DOI: 10.1021/ac1024717.
View
11.
Michael H, Voss C
. Evaluation of the sustainability of deep groundwater as an arsenic-safe resource in the Bengal Basin. Proc Natl Acad Sci U S A. 2008; 105(25):8531-6.
PMC: 2438411.
DOI: 10.1073/pnas.0710477105.
View
12.
Jin Q, Bethke C
. A new rate law describing microbial respiration. Appl Environ Microbiol. 2003; 69(4):2340-8.
PMC: 154818.
DOI: 10.1128/AEM.69.4.2340-2348.2003.
View
13.
Polizzotto M, Harvey C, Sutton S, Fendorf S
. Processes conducive to the release and transport of arsenic into aquifers of Bangladesh. Proc Natl Acad Sci U S A. 2005; 102(52):18819-23.
PMC: 1323201.
DOI: 10.1073/pnas.0509539103.
View
14.
Planer-Friedrich B, Schaller J, Wismeth F, Mehlhorn J, Hug S
. Monothioarsenate Occurrence in Bangladesh Groundwater and Its Removal by Ferrous and Zero-Valent Iron Technologies. Environ Sci Technol. 2018; 52(10):5931-5939.
DOI: 10.1021/acs.est.8b00948.
View
15.
Planer-Friedrich B
. Comment on "Thioarsenite Detection and Implications for Arsenic Transport in Groundwater". Environ Sci Technol. 2020; 54(12):7730-7731.
DOI: 10.1021/acs.est.0c01641.
View
16.
Couture R, Rose J, Kumar N, Mitchell K, Wallschlager D, Van Cappellen P
. Sorption of arsenite, arsenate, and thioarsenates to iron oxides and iron sulfides: a kinetic and spectroscopic investigation. Environ Sci Technol. 2013; 47(11):5652-9.
DOI: 10.1021/es3049724.
View
17.
ODay P, Vlassopoulos D, Root R, Rivera N
. The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proc Natl Acad Sci U S A. 2004; 101(38):13703-8.
PMC: 518762.
DOI: 10.1073/pnas.0402775101.
View
18.
Hansel C, Benner S, Fendorf S
. Competing Fe (II)-induced mineralization pathways of ferrihydrite. Environ Sci Technol. 2005; 39(18):7147-53.
DOI: 10.1021/es050666z.
View
19.
Sun J, Quicksall A, Chillrud S, Mailloux B, Bostick B
. Arsenic mobilization from sediments in microcosms under sulfate reduction. Chemosphere. 2016; 153:254-61.
PMC: 4837041.
DOI: 10.1016/j.chemosphere.2016.02.117.
View
20.
Rawson J, Siade A, Sun J, Neidhardt H, Berg M, Prommer H
. Quantifying Reactive Transport Processes Governing Arsenic Mobility after Injection of Reactive Organic Carbon into a Bengal Delta Aquifer. Environ Sci Technol. 2017; 51(15):8471-8480.
DOI: 10.1021/acs.est.7b02097.
View