» Articles » PMID: 37031051

Polar Angle Asymmetries in Visual Perception and Neural Architecture

Overview
Journal Trends Neurosci
Specialty Neurology
Date 2023 Apr 8
PMID 37031051
Authors
Affiliations
Soon will be listed here.
Abstract

Human visual performance changes with visual field location. It is best at the center of gaze and declines with eccentricity, and also varies markedly with polar angle. These perceptual polar angle asymmetries are linked to asymmetries in the organization of the visual system. We review and integrate research quantifying how performance changes with visual field location and how this relates to neural organization at multiple stages of the visual system. We first briefly review how performance varies with eccentricity and the neural foundations of this effect. We then focus on perceptual polar angle asymmetries and their neural foundations. Characterizing perceptual and neural variations across and around the visual field contributes to our understanding of how the brain translates visual signals into neural representations which form the basis of visual perception.

Citing Articles

Opposite asymmetry in visual perception of humans and macaques.

Tuncok E, Kiorpes L, Carrasco M Curr Biol. 2025; 35(3):681-687.e4.

PMID: 39814028 PMC: 11817857. DOI: 10.1016/j.cub.2024.12.024.


Asymmetries in foveal vision.

Jenks S, Carrasco M, Poletti M bioRxiv. 2025; .

PMID: 39763996 PMC: 11702834. DOI: 10.1101/2024.12.20.629715.


The neural link between stimulus duration and spatial location in the human visual hierarchy.

Centanino V, Fortunato G, Bueti D Nat Commun. 2024; 15(1):10720.

PMID: 39730326 PMC: 11681071. DOI: 10.1038/s41467-024-54336-5.


Visual Field Asymmetries in Responses to ON and OFF Pathway Biasing Stimuli.

Scott M, Yakovleva A, Norcia A Vis Neurosci. 2024; 41():E007.

PMID: 39698978 PMC: 11730990. DOI: 10.1017/S095252382400004X.


Motion-induced blindness shows spatial anisotropies in conscious perception.

Sarkozy A, Robinson J, Kovacs G Sci Rep. 2024; 14(1):27718.

PMID: 39532989 PMC: 11557702. DOI: 10.1038/s41598-024-78939-6.


References
1.
Ellis C, Yates T, Skalaban L, Bejjanki V, Arcaro M, Turk-Browne N . Retinotopic organization of visual cortex in human infants. Neuron. 2021; 109(16):2616-2626.e6. DOI: 10.1016/j.neuron.2021.06.004. View

2.
Himmelberg M, Kurzawski J, Benson N, Pelli D, Carrasco M, Winawer J . Cross-dataset reproducibility of human retinotopic maps. Neuroimage. 2021; 244:118609. PMC: 8560578. DOI: 10.1016/j.neuroimage.2021.118609. View

3.
Levy I, Hasson U, Avidan G, Hendler T, Malach R . Center-periphery organization of human object areas. Nat Neurosci. 2001; 4(5):533-9. DOI: 10.1038/87490. View

4.
Carrasco M, Barbot A . How Attention Affects Spatial Resolution. Cold Spring Harb Symp Quant Biol. 2015; 79:149-60. PMC: 4698156. DOI: 10.1101/sqb.2014.79.024687. View

5.
Chakravarthi R, Papadaki D, Krajnik J . Visual field asymmetries in numerosity processing. Atten Percept Psychophys. 2022; 84(8):2607-2622. PMC: 9630184. DOI: 10.3758/s13414-022-02585-1. View