» Articles » PMID: 37030725

Attention-Guided Autoencoder for Automated Progression Prediction of Subjective Cognitive Decline With Structural MRI

Overview
Authors
Affiliations
Soon will be listed here.
Abstract

Subjective cognitive decline (SCD) is the preclinical stage of Alzheimer's disease (AD) which happens even earlier than mild cognitive impairment (MCI). Progressive SCD will convert to MCI with the potential of further evolving to AD. Therefore, early identification of progressive SCD with neuroimaging techniques (e.g., structural MRI) is of great clinical value for early intervention of AD. However, existing MRI-based machine/deep learning methods usually suffer the small-sample-size problem and lack interpretability. To this end, we propose an interpretable autoencoder model with domain transfer learning (IADT) for progression prediction of SCD. Firstly, the proposed model can leverage MRIs from both the target domain (i.e., SCD) and auxiliary domains (e.g., AD and NC) for progressive SCD identification. Besides, it can automatically locate the disease-related brain regions of interest (defined in brain atlases) through an attention mechanism, which shows good interpretability. In addition, the IADT model is straightforward to train and test with only 5  ∼ 10 seconds on CPUs and is suitable for medical tasks with small datasets. Extensive experiments on the publicly available ADNI dataset and a private CLAS dataset have demonstrated the effectiveness of the proposed method.

Citing Articles

Hybrid multi-modality multi-task learning for forecasting progression trajectories in subjective cognitive decline.

Yu M, Fang Y, Liu Y, Bozoki A, Xiao S, Yue L Neural Netw. 2025; 186:107263.

PMID: 39985974 PMC: 11893250. DOI: 10.1016/j.neunet.2025.107263.


Comparing the Artificial Intelligence Detection Models to Standard Diagnostic Methods and Alternative Models in Identifying Alzheimer's Disease in At-Risk or Early Symptomatic Individuals: A Scoping Review.

Babu B, Parvathy G, Mohideen Bawa F, Gill G, Patel J, Sibia D Cureus. 2025; 16(12):e75389.

PMID: 39781179 PMC: 11709138. DOI: 10.7759/cureus.75389.

References
1.
Shi F, Liu B, Zhou Y, Yu C, Jiang T . Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer's disease: Meta-analyses of MRI studies. Hippocampus. 2009; 19(11):1055-64. DOI: 10.1002/hipo.20573. View

2.
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N . Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002; 15(1):273-89. DOI: 10.1006/nimg.2001.0978. View

3.
Eichenbaum H, Otto T, Cohen N . The hippocampus--what does it do?. Behav Neural Biol. 1992; 57(1):2-36. DOI: 10.1016/0163-1047(92)90724-i. View

4.
Jack Jr C, Bernstein M, Fox N, Thompson P, Alexander G, Harvey D . The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging. 2008; 27(4):685-91. PMC: 2544629. DOI: 10.1002/jmri.21049. View

5.
Guan H, Liu M . Domain Adaptation for Medical Image Analysis: A Survey. IEEE Trans Biomed Eng. 2021; 69(3):1173-1185. PMC: 9011180. DOI: 10.1109/TBME.2021.3117407. View