6.
Wang Z, Xu D, Xu J, Zhang X
. Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Chem Soc Rev. 2013; 43(22):7746-86.
DOI: 10.1039/c3cs60248f.
View
7.
Al-Qirby L, Radiman S, Siong C, Ali A
. Sonochemical synthesis and characterization of CoO nanocrystals in the presence of the ionic liquid [EMIM][BF]. Ultrason Sonochem. 2016; 38:640-651.
DOI: 10.1016/j.ultsonch.2016.08.016.
View
8.
Wang Y, Hu T, Liu Q, Zhang L
. CoMnO embedded in MnOOH nanorods as a bifunctional catalyst for oxygen reduction and oxygen evolution reactions. Chem Commun (Camb). 2018; 54(32):4005-4008.
DOI: 10.1039/c8cc00870a.
View
9.
Aijaz A, Masa J, Rosler C, Xia W, Weide P, Botz A
. Co@Co3O4 Encapsulated in Carbon Nanotube-Grafted Nitrogen-Doped Carbon Polyhedra as an Advanced Bifunctional Oxygen Electrode. Angew Chem Int Ed Engl. 2016; 55(12):4087-91.
DOI: 10.1002/anie.201509382.
View
10.
Zhou D, Li P, Lin X, McKinley A, Kuang Y, Liu W
. Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly. Chem Soc Rev. 2021; 50(15):8790-8817.
DOI: 10.1039/d1cs00186h.
View
11.
Liang Y, Wang H, Diao P, Chang W, Hong G, Li Y
. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J Am Chem Soc. 2012; 134(38):15849-57.
DOI: 10.1021/ja305623m.
View
12.
Zhao C, Liu J, Wang J, Ren D, Li B, Zhang Q
. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chem Soc Rev. 2021; 50(13):7745-7778.
DOI: 10.1039/d1cs00135c.
View
13.
Fu J, Cano Z, Park M, Yu A, Fowler M, Chen Z
. Electrically Rechargeable Zinc-Air Batteries: Progress, Challenges, and Perspectives. Adv Mater. 2016; 29(7).
DOI: 10.1002/adma.201604685.
View
14.
Burke M, Kast M, Trotochaud L, Smith A, Boettcher S
. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. J Am Chem Soc. 2015; 137(10):3638-48.
DOI: 10.1021/jacs.5b00281.
View
15.
Kitano S, Noguchi T, Nishihara M, Kamitani K, Sugiyama T, Yoshioka S
. Heterointerface Created on Au-Cluster-Loaded Unilamellar Hydroxide Electrocatalysts as a Highly Active Site for the Oxygen Evolution Reaction. Adv Mater. 2022; 34(16):e2110552.
DOI: 10.1002/adma.202110552.
View
16.
Wu X, Tang C, Cheng Y, Min X, Jiang S, Wang S
. Bifunctional Catalysts for Reversible Oxygen Evolution Reaction and Oxygen Reduction Reaction. Chemistry. 2020; 26(18):3906-3929.
DOI: 10.1002/chem.201905346.
View
17.
Balayeva O, Azizov A, Muradov M, Alosmanov R, Eyvazova G, Mammadyarova S
. Cobalt chromium-layered double hydroxide, α- and β- Co(OH) and amorphous Cr(OH): synthesis, modification and characterization. Heliyon. 2019; 5(11):e02725.
PMC: 6861585.
DOI: 10.1016/j.heliyon.2019.e02725.
View
18.
Xiao Y, Hu C, Qu L, Hu C, Cao M
. Three-dimensional macroporous NiCo(2)O(4) sheets as a non-noble catalyst for efficient oxygen reduction reactions. Chemistry. 2013; 19(42):14271-8.
DOI: 10.1002/chem.201302193.
View
19.
Song W, Ren Z, Chen S, Meng Y, Biswas S, Nandi P
. Ni- and Mn-Promoted Mesoporous Co3O4: A Stable Bifunctional Catalyst with Surface-Structure-Dependent Activity for Oxygen Reduction Reaction and Oxygen Evolution Reaction. ACS Appl Mater Interfaces. 2016; 8(32):20802-13.
DOI: 10.1021/acsami.6b06103.
View
20.
Lu Q, Wu H, Zheng X, Chen Y, Rogach A, Han X
. Encapsulating Cobalt Nanoparticles in Interconnected N-Doped Hollow Carbon Nanofibers with Enriched CoNC Moiety for Enhanced Oxygen Electrocatalysis in Zn-Air Batteries. Adv Sci (Weinh). 2021; 8(20):e2101438.
PMC: 8529470.
DOI: 10.1002/advs.202101438.
View