» Articles » PMID: 37014450

Brimonidine Eye Drops Reveal Diminished Sympathetic Pupillary Tone in Comatose Patients with Brain Injury

Abstract

Background: There is an urgent need for easy-to-perform bedside measures to detect residual consciousness in clinically unresponsive patients with acute brain injury. Interestingly, the sympathetic control of pupil size is thought to be lost in states of unconsciousness. We therefore hypothesized that administration of brimonidine (an alpha-2-adrenergic agonist) eye drops into one eye should produce a pharmacologic Horner's syndrome if the clinically unresponsive patient is conscious, but not if the patient is unconscious. Here, in a first step to explore this hypothesis, we investigated the potential of brimonidine eye drops to distinguish preserved sympathetic pupillary function in awake volunteers from impairment of sympathetic tone in patients in a coma.

Methods: We enrolled comatose patients admitted for acute brain injury to one of the intensive care units (ICU) of a tertiary referral center, in whom EEG and/or neuroimaging for all practical purposes had ruled out residual consciousness. Exclusion criteria were deep sedation, medications with known drug interactions with brimonidine, and a history of eye disease. Age- and sex-matched healthy and awake volunteers served as controls. We measured pupils of both eyes, under scotopic conditions, at baseline and five times 5-120 min after administering brimonidine into the right eye, using automated pupillometry. Primary outcomes were miosis and anisocoria at the individual and group levels.

Results: We included 15 comatose ICU patients (seven women, mean age 59 ± 13.8 years) and 15 controls (seven women, mean age 55 ± 16.3 years). At 30 min, miosis and anisocoria were seen in all 15 controls (mean difference between the brimonidine-treated pupil and the control pupil: - 1.31 mm, 95% CI [- 1.51; - 1.11], p < 0.001), but in none (p < 0.001) of the 15 ICU patients (mean difference: 0.09 mm, 95% CI [- 0.12;0.30], p > 0.99). This effect was unchanged after 120 min and remained robust in sensitivity analyses correcting for baseline pupil size, age, and room illuminance.

Conclusion: In this proof-of-principle study, brimonidine eye drops produced anisocoria in awake volunteers but not in comatose patients with brain injury. This suggests that automated pupillometry after administration of brimonidine can distinguish between the extremes of the spectrum of consciousness (i.e., fully conscious vs. deeply comatose). A larger study testing the "intermediate zone" of disorders of consciousness in the ICU seems warranted.

Citing Articles

The Pupillary Light-Off Reflex in Acute Disorders of Consciousness.

Zarifkar P, Othman M, Hansen K, Amiri M, Stuckler S, Fabritius M Neurocrit Care. 2024; .

PMID: 39322845 DOI: 10.1007/s12028-024-02133-9.


Arterial Spin Labeling Magnetic Resonance Imaging for Acute Disorders of Consciousness in the Intensive Care Unit.

Gronlund E, Lindberg U, Fisher P, Othman M, Amiri M, Solling C Neurocrit Care. 2024; 41(3):1027-1037.

PMID: 38918338 PMC: 11599417. DOI: 10.1007/s12028-024-02031-0.

References
1.
Sandroni C, Cariou A, Cavallaro F, Cronberg T, Friberg H, Hoedemaekers C . Prognostication in comatose survivors of cardiac arrest: an advisory statement from the European Resuscitation Council and the European Society of Intensive Care Medicine. Resuscitation. 2014; 85(12):1779-89. DOI: 10.1016/j.resuscitation.2014.08.011. View

2.
Top Karti D, Karti O, Durmaz G, Gokcay F, Celebisoy N . The evaluation of patient demographics, etiologies and apraclonidine test results in adult Horner's syndrome. Int Ophthalmol. 2021; 42(4):1233-1239. DOI: 10.1007/s10792-021-02109-0. View

3.
Raimondo F, Rohaut B, Demertzi A, Valente M, Engemann D, Salti M . Brain-heart interactions reveal consciousness in noncommunicating patients. Ann Neurol. 2017; 82(4):578-591. DOI: 10.1002/ana.25045. View

4.
Opic P, Ruegg S, Marsch S, Gut S, Sutter R . Automated Quantitative Pupillometry in the Critically Ill: A Systematic Review of the Literature. Neurology. 2021; 97(6):e629-e642. DOI: 10.1212/WNL.0000000000012295. View

5.
LOWENSTEIN O, Loewenfeld I . THE SLEEP-WAKING CYCLE AND PUPILLARY ACTIVITY. Ann N Y Acad Sci. 1964; 117:142-56. DOI: 10.1111/j.1749-6632.1964.tb48169.x. View