6.
Lindstrom M, Nister M
. Silencing of ribosomal protein S9 elicits a multitude of cellular responses inhibiting the growth of cancer cells subsequent to p53 activation. PLoS One. 2010; 5(3):e9578.
PMC: 2833189.
DOI: 10.1371/journal.pone.0009578.
View
7.
Ueda T, Sasaki M, Elia A, Chio I, Hamada K, Fukunaga R
. Combined deficiency for MAP kinase-interacting kinase 1 and 2 (Mnk1 and Mnk2) delays tumor development. Proc Natl Acad Sci U S A. 2010; 107(32):13984-90.
PMC: 2922567.
DOI: 10.1073/pnas.1008136107.
View
8.
Bao S, Wu Q, McLendon R, Hao Y, Shi Q, Hjelmeland A
. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006; 444(7120):756-60.
DOI: 10.1038/nature05236.
View
9.
Jivotovskaya A, Valasek L, Hinnebusch A, Nielsen K
. Eukaryotic translation initiation factor 3 (eIF3) and eIF2 can promote mRNA binding to 40S subunits independently of eIF4G in yeast. Mol Cell Biol. 2006; 26(4):1355-72.
PMC: 1367198.
DOI: 10.1128/MCB.26.4.1355-1372.2006.
View
10.
Donze O, Jagus R, Koromilas A, Hershey J, Sonenberg N
. Abrogation of translation initiation factor eIF-2 phosphorylation causes malignant transformation of NIH 3T3 cells. EMBO J. 1995; 14(15):3828-34.
PMC: 394457.
DOI: 10.1002/j.1460-2075.1995.tb00052.x.
View
11.
Boyce M, Bryant K, Jousse C, Long K, Harding H, Scheuner D
. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science. 2005; 307(5711):935-9.
DOI: 10.1126/science.1101902.
View
12.
Velasco M, Kosti A, Penalva L, Hernandez G
. The Diverse Roles of RNA-Binding Proteins in Glioma Development. Adv Exp Med Biol. 2019; 1157:29-39.
DOI: 10.1007/978-3-030-19966-1_2.
View
13.
Teneggi V, Novotny-Diermayr V, Lee L, Yasin M, Yeo P, Ethirajulu K
. First-in-Human, Healthy Volunteers Integrated Protocol of ETC-206, an Oral Mnk 1/2 Kinase Inhibitor Oncology Drug. Clin Transl Sci. 2019; 13(1):57-66.
PMC: 6951458.
DOI: 10.1111/cts.12678.
View
14.
Krassnig S, Wohlrab C, Golob-Schwarzl N, Raicht A, Schatz C, Birkl-Toeglhofer A
. A Profound Basic Characterization of eIFs in Gliomas: Identifying eIF3I and 4H as Potential Novel Target Candidates in Glioma Therapy. Cancers (Basel). 2021; 13(6).
PMC: 8004965.
DOI: 10.3390/cancers13061482.
View
15.
Hershey J, Sonenberg N, Mathews M
. Principles of Translational Control. Cold Spring Harb Perspect Biol. 2018; 11(9).
PMC: 6719596.
DOI: 10.1101/cshperspect.a032607.
View
16.
Deiss L, Berissi H, Kimchi A
. DAP-5, a novel homolog of eukaryotic translation initiation factor 4G isolated as a putative modulator of gamma interferon-induced programmed cell death. Mol Cell Biol. 1997; 17(3):1615-25.
PMC: 231887.
DOI: 10.1128/MCB.17.3.1615.
View
17.
Mecca C, Giambanco I, Donato R, Arcuri C
. Targeting mTOR in Glioblastoma: Rationale and Preclinical/Clinical Evidence. Dis Markers. 2019; 2018:9230479.
PMC: 6312595.
DOI: 10.1155/2018/9230479.
View
18.
De Benedetti A, Rhoads R
. Overexpression of eukaryotic protein synthesis initiation factor 4E in HeLa cells results in aberrant growth and morphology. Proc Natl Acad Sci U S A. 1990; 87(21):8212-6.
PMC: 54925.
DOI: 10.1073/pnas.87.21.8212.
View
19.
Waskiewicz A, Flynn A, Proud C, Cooper J
. Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J. 1997; 16(8):1909-20.
PMC: 1169794.
DOI: 10.1093/emboj/16.8.1909.
View
20.
Konicek B, Stephens J, McNulty A, Robichaud N, Peery R, Dumstorf C
. Therapeutic inhibition of MAP kinase interacting kinase blocks eukaryotic initiation factor 4E phosphorylation and suppresses outgrowth of experimental lung metastases. Cancer Res. 2011; 71(5):1849-57.
DOI: 10.1158/0008-5472.CAN-10-3298.
View