» Articles » PMID: 36994077

Alterations in Oligodendrocyte Transcriptional Networks Reveal Region-specific Vulnerabilities to Neurological Disease

Overview
Journal iScience
Publisher Cell Press
Date 2023 Mar 30
PMID 36994077
Authors
Affiliations
Soon will be listed here.
Abstract

Neurological disease is characterized the by dysfunction of specific neuroanatomical regions. To determine whether region-specific vulnerabilities have a transcriptional basis at cell-type-specific resolution, we analyzed gene expression in mouse oligodendrocytes across various brain regions. Oligodendrocyte transcriptomes cluster in an anatomical arrangement along the rostrocaudal axis. Moreover, regional oligodendrocyte populations preferentially regulate genes implicated in diseases that target their region of origin. Systems-level analyses identify five region-specific co-expression networks representing distinct molecular pathways in oligodendrocytes. The cortical network exhibits alterations in mouse models of intellectual disability and epilepsy, the cerebellar network in ataxia, and the spinal network in multiple sclerosis. Bioinformatic analyses reveal potential molecular regulators of these networks, which were confirmed to modulate network expression in human oligodendroglioma cells, including reversal of the disease-associated transcriptional effects of a pathogenic Spinocerebellar ataxia type 1 allele. These findings identify targetable region-specific vulnerabilities to neurological disease mediated by oligodendrocytes.

Citing Articles

Deconvolution reveals cell-type-specific transcriptomic changes in the aging mouse brain.

Ren Y, Wang X, Zhang S, Hu H, Quicksall Z, Lee S Sci Rep. 2023; 13(1):16855.

PMID: 37803069 PMC: 10558435. DOI: 10.1038/s41598-023-44183-7.

References
1.
Anders S, Pyl P, Huber W . HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2014; 31(2):166-9. PMC: 4287950. DOI: 10.1093/bioinformatics/btu638. View

2.
Itoh N, Itoh Y, Tassoni A, Ren E, Kaito M, Ohno A . Cell-specific and region-specific transcriptomics in the multiple sclerosis model: Focus on astrocytes. Proc Natl Acad Sci U S A. 2017; 115(2):E302-E309. PMC: 5777065. DOI: 10.1073/pnas.1716032115. View

3.
Kim D, Paggi J, Park C, Bennett C, Salzberg S . Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019; 37(8):907-915. PMC: 7605509. DOI: 10.1038/s41587-019-0201-4. View

4.
Zhang Q, Liu W, Zhang H, Xie G, Miao Y, Xia M . hTFtarget: A Comprehensive Database for Regulations of Human Transcription Factors and Their Targets. Genomics Proteomics Bioinformatics. 2020; 18(2):120-128. PMC: 7647694. DOI: 10.1016/j.gpb.2019.09.006. View

5.
Schneider A, Griffiths I, Readhead C, Nave K . Dominant-negative action of the jimpy mutation in mice complemented with an autosomal transgene for myelin proteolipid protein. Proc Natl Acad Sci U S A. 1995; 92(10):4447-51. PMC: 41961. DOI: 10.1073/pnas.92.10.4447. View