6.
Tandon M, Thomas P, Shokravi M, Singh S, Samra S, Chang D
. Synthesis and antitumour effect of the melanogenesis-based antimelanoma agent N-propionyl-4-S-cysteaminylphenol. Biochem Pharmacol. 1998; 55(12):2023-9.
DOI: 10.1016/s0006-2952(98)00090-2.
View
7.
Takada T, Yamashita T, Sato M, Sato A, Ono I, Tamura Y
. Growth inhibition of re-challenge B16 melanoma transplant by conjugates of melanogenesis substrate and magnetite nanoparticles as the basis for developing melanoma-targeted chemo-thermo-immunotherapy. J Biomed Biotechnol. 2009; 2009:457936.
PMC: 2760320.
DOI: 10.1155/2009/457936.
View
8.
Thomas P, Kishi H, Cao H, Ota M, Yamashita T, Singh S
. Selective incorporation and specific cytocidal effect as the cellular basis for the antimelanoma action of sulphur containing tyrosine analogs. J Invest Dermatol. 1999; 113(6):928-34.
DOI: 10.1046/j.1523-1747.1999.00781.x.
View
9.
Alena F, Iwashina T, Gili A, Jimbow K
. Selective in vivo accumulation of N-acetyl-4-S-cysteaminylphenol in B16F10 murine melanoma and enhancement of its in vitro and in vivo antimelanoma effect by combination of buthionine sulfoximine. Cancer Res. 1994; 54(10):2661-6.
View
10.
Uhara H
. Recent advances in therapeutic strategies for unresectable or metastatic melanoma and real-world data in Japan. Int J Clin Oncol. 2018; 24(12):1508-1514.
DOI: 10.1007/s10147-018-1246-y.
View
11.
Ishii-Osai Y, Yamashita T, Tamura Y, Sato N, Ito A, Honda H
. N-propionyl-4-S-cysteaminylphenol induces apoptosis in B16F1 cells and mediates tumor-specific T-cell immune responses in a mouse melanoma model. J Dermatol Sci. 2012; 67(1):51-60.
DOI: 10.1016/j.jdermsci.2012.04.009.
View
12.
Shah D, Dronca R
. Latest advances in chemotherapeutic, targeted, and immune approaches in the treatment of metastatic melanoma. Mayo Clin Proc. 2014; 89(4):504-19.
PMC: 4034544.
DOI: 10.1016/j.mayocp.2014.02.002.
View
13.
Gili A, Thomas P, Ota M, Jimbow K
. Comparison of in vitro cytotoxicity of N-acetyl and N-propionyl derivatives of phenolic thioether amines in melanoma and neuroblastoma cells and the relationship to tyrosinase and tyrosine hydroxylase enzyme activity. Melanoma Res. 2000; 10(1):9-15.
View
14.
Sato A, Tamura Y, Sato N, Yamashita T, Takada T, Sato M
. Melanoma-targeted chemo-thermo-immuno (CTI)-therapy using N-propionyl-4-S-cysteaminylphenol-magnetite nanoparticles elicits CTL response via heat shock protein-peptide complex release. Cancer Sci. 2010; 101(9):1939-46.
PMC: 11159338.
DOI: 10.1111/j.1349-7006.2010.01623.x.
View
15.
Ito Y, Jimbow K
. Selective cytotoxicity of 4-S-cysteaminylphenol on follicular melanocytes of the black mouse: rational basis for its application to melanoma chemotherapy. Cancer Res. 1987; 47(12):3278-84.
View
16.
Jimbow K, Iwashina T, Alena F, Yamada K, Pankovich J, Umemura T
. Exploitation of pigment biosynthesis pathway as a selective chemotherapeutic approach for malignant melanoma. J Invest Dermatol. 1993; 100(2 Suppl):231S-238S.
View
17.
Pankovich J, Jimbow K
. Tyrosine transport in a human melanoma cell line as a basis for selective transport of cytotoxic analogues. Biochem J. 1991; 280 ( Pt 3):721-5.
PMC: 1130513.
DOI: 10.1042/bj2800721.
View
18.
Sato M, Yamashita T, Ohkura M, Osai Y, Sato A, Takada T
. N-propionyl-cysteaminylphenol-magnetite conjugate (NPrCAP/M) is a nanoparticle for the targeted growth suppression of melanoma cells. J Invest Dermatol. 2009; 129(9):2233-41.
DOI: 10.1038/jid.2009.39.
View
19.
Ito A, Honda H, Kobayashi T
. Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of "heat-controlled necrosis" with heat shock protein expression. Cancer Immunol Immunother. 2005; 55(3):320-8.
PMC: 11030207.
DOI: 10.1007/s00262-005-0049-y.
View
20.
Miura S, Ueda T, Jimbow K, Ito S, Fujita K
. Synthesis of cysteinylphenol, cysteaminylphenol, and related compounds, and in vivo evaluation of antimelanoma effect. Arch Dermatol Res. 1987; 279(4):219-25.
DOI: 10.1007/BF00417318.
View