» Articles » PMID: 36977582

Transferrin Receptor Is Necessary for Proper Oligodendrocyte Iron Homeostasis and Development

Overview
Journal J Neurosci
Specialty Neurology
Date 2023 Mar 28
PMID 36977582
Authors
Affiliations
Soon will be listed here.
Abstract

To test the hypothesis that the transferrin (Tf) cycle has unique importance for oligodendrocyte development and function, we disrupted the expression of the Tf receptor (Tfr) gene in oligodendrocyte progenitor cells (OPCs) on mice of either sex using the system. This ablation results in the elimination of iron incorporation via the Tf cycle but leaves other Tf functions intact. Mice lacking Tfr, specifically in NG2 or Sox10-positive OPCs, developed a hypomyelination phenotype. Both OPC differentiation and myelination were affected, and Tfr deletion resulted in impaired OPC iron absorption. Specifically, the brains of Tfr cKO animals presented a reduction in the quantity of myelinated axons, as well as fewer mature oligodendrocytes. In contrast, the ablation of Tfr in adult mice affected neither mature oligodendrocytes nor myelin synthesis. RNA-seq analysis performed in Tfr cKO OPCs revealed misregulated genes involved in OPC maturation, myelination, and mitochondrial activity. Tfr deletion in cortical OPCs also disrupted the activity of the mTORC1 signaling pathway, epigenetic mechanisms critical for gene transcription and the expression of structural mitochondrial genes. RNA-seq studies were additionally conducted in OPCs in which iron storage was disrupted by deleting the ferritin heavy chain. These OPCs display abnormal regulation of genes associated with iron transport, antioxidant activity, and mitochondrial activity. Thus, our results indicate that the Tf cycle is central for iron homeostasis in OPCs during postnatal development and suggest that both iron uptake via Tfr and iron storage in ferritin are critical for energy production, mitochondrial activity, and maturation of postnatal OPCs. By knocking-out transferrin receptor (Tfr) specifically in oligodendrocyte progenitor cells (OPCs), we have established that iron incorporation via the Tf cycle is key for OPC iron homeostasis and for the normal function of these cells during the postnatal development of the CNS. Moreover, RNA-seq analysis indicated that both Tfr iron uptake and ferritin iron storage are critical for proper OPC mitochondrial activity, energy production, and maturation.

Citing Articles

Role of iron in brain development, aging, and neurodegenerative diseases.

Gao Q, Zhou Y, Chen Y, Hu W, Jin W, Zhou C Ann Med. 2025; 57(1):2472871.

PMID: 40038870 PMC: 11884104. DOI: 10.1080/07853890.2025.2472871.


Oligodendrocyte Slc48a1 (Hrg1) encodes a functional heme transporter required for myelin integrity.

Stockley J, Vaquie A, Xu Z, Bartels T, Jordan G, Holmqvist S Glia. 2024; 73(2):399-421.

PMID: 39501820 PMC: 11662986. DOI: 10.1002/glia.24641.


Age, sex, and cell type-resolved hypothalamic gene expression across the pubertal transition in mice.

Sokolowski D, Hou H, Yuki K, Roy A, Chan C, Choi W Biol Sex Differ. 2024; 15(1):83.

PMID: 39449090 PMC: 11515584. DOI: 10.1186/s13293-024-00661-9.


Quantitative susceptibility mapping in the brain reflects spatial expression of genes involved in iron homeostasis and myelination.

Cohen Z, Lau L, Ahmed M, Jack C, Liu C Hum Brain Mapp. 2024; 45(9):e26688.

PMID: 38896001 PMC: 11187871. DOI: 10.1002/hbm.26688.


Identity and Maturity of iPSC-Derived Oligodendrocytes in 2D and Organoid Systems.

Zeldich E, Rajkumar S Cells. 2024; 13(8.

PMID: 38667289 PMC: 11049552. DOI: 10.3390/cells13080674.

References
1.
Todorich B, Pasquini J, Garcia C, Paez P, Connor J . Oligodendrocytes and myelination: the role of iron. Glia. 2008; 57(5):467-78. DOI: 10.1002/glia.20784. View

2.
Saleh M, Espinosa de los Monteros A, de Arriba Zerpa G, Fontaine I, Piaud O, Djordjijevic D . Myelination and motor coordination are increased in transferrin transgenic mice. J Neurosci Res. 2003; 72(5):587-94. DOI: 10.1002/jnr.10619. View

3.
Beard J, Wiesinger J, Connor J . Pre- and postweaning iron deficiency alters myelination in Sprague-Dawley rats. Dev Neurosci. 2003; 25(5):308-15. DOI: 10.1159/000073507. View

4.
Zamora N, Cheli V, Santiago Gonzalez D, Wan R, Paez P . Deletion of Voltage-Gated Calcium Channels in Astrocytes during Demyelination Reduces Brain Inflammation and Promotes Myelin Regeneration in Mice. J Neurosci. 2020; 40(17):3332-3347. PMC: 7178909. DOI: 10.1523/JNEUROSCI.1644-19.2020. View

5.
Rosario F, Gupta M, Myatt L, Powell T, Glenn J, Cox L . Mechanistic Target of Rapamycin Complex 1 Promotes the Expression of Genes Encoding Electron Transport Chain Proteins and Stimulates Oxidative Phosphorylation in Primary Human Trophoblast Cells by Regulating Mitochondrial Biogenesis. Sci Rep. 2019; 9(1):246. PMC: 6343003. DOI: 10.1038/s41598-018-36265-8. View