» Articles » PMID: 36910256

Self-synchronization of Reinjected Droplets for High-efficiency Droplet Pairing and Merging

Overview
Date 2023 Mar 13
PMID 36910256
Authors
Affiliations
Soon will be listed here.
Abstract

Droplet merging serves as a powerful tool to add reagents to moving droplets for biological and chemical reactions. However, unsynchronized droplet pairing impedes high-efficiency merging. Here, we develop a microfluidic design for the self-synchronization of reinjected droplets. A periodic increase in the hydrodynamic resistance caused by droplet blocking a T-junction enables automatic pairing of droplets. After inducing spacing, the paired droplets merge downstream under an electric field. The blockage-based design can achieve a 100% synchronization efficiency even when the mismatch rate of droplet frequencies reaches 10%. Over 98% of the droplets can still be synchronized at nonuniform droplet sizes and fluctuating reinjection flow rates. Moreover, the droplet pairing ratio can be adjusted flexibly for on-demand sample addition. Using this system, we merge two groups of droplets encapsulating enzyme/substrate, demonstrating its capacity to conduct multi-step reactions. We also combine droplet sorting and merging to coencapsulate single cells and single beads, providing a basis for high-efficiency single-cell sequencing. We expect that this system can be integrated with other droplet manipulation systems for a broad range of chemical and biological applications.

Citing Articles

From specialization to broad adoption: Key trends in droplet microfluidic innovations enhancing accessibility to non-experts.

Breukers J, Ven K, Verbist W, Rutten I, Lammertyn J Biomicrofluidics. 2025; 19(2):021302.

PMID: 40046719 PMC: 11879384. DOI: 10.1063/5.0242599.


Microfluidics for the biological analysis of atmospheric ice-nucleating particles: Perspectives and challenges.

Tarn M, Shaw K, Foster P, West J, Johnston I, McCluskey D Biomicrofluidics. 2025; 19(1):011502.

PMID: 40041008 PMC: 11878220. DOI: 10.1063/5.0236911.


Hyperspectral Imaging for High Throughput Optical Spectroscopy of pL Droplets.

Sulliger M, Ortega Arroyo J, Quidant R Anal Chem. 2025; 97(5):2736-2744.

PMID: 39879326 PMC: 11822737. DOI: 10.1021/acs.analchem.4c04731.


Droplet Microfluidics for High-Throughput Screening and Directed Evolution of Biomolecules.

Vladisaljevic G Micromachines (Basel). 2024; 15(8).

PMID: 39203623 PMC: 11356158. DOI: 10.3390/mi15080971.


An Acoustofluidic Picoinjector.

Naquin T, Jain S, Zhang J, Xu X, Yao G, Naquin C Sens Actuators B Chem. 2024; 418.

PMID: 39131888 PMC: 11308560. DOI: 10.1016/j.snb.2024.136294.

References
1.
Zhang H, Guzman A, Wippold J, Li Y, Dai J, Huang C . An ultra high-efficiency droplet microfluidics platform using automatically synchronized droplet pairing and merging. Lab Chip. 2020; 20(21):3948-3959. DOI: 10.1039/d0lc00757a. View

2.
Chung M, Nunez D, Cai D, Kurabayashi K . Deterministic droplet-based co-encapsulation and pairing of microparticles via active sorting and downstream merging. Lab Chip. 2017; 17(21):3664-3671. DOI: 10.1039/c7lc00745k. View

3.
Nan L, Lai M, Tang M, Chan Y, Poon L, Shum H . On-Demand Droplet Collection for Capturing Single Cells. Small. 2019; 16(9):e1902889. DOI: 10.1002/smll.201902889. View

4.
Frenz L, El Harrak A, Pauly M, Begin-Colin S, Griffiths A, Baret J . Droplet-based microreactors for the synthesis of magnetic iron oxide nanoparticles. Angew Chem Int Ed Engl. 2008; 47(36):6817-20. DOI: 10.1002/anie.200801360. View

5.
Rotem A, Ram O, Shoresh N, Sperling R, Goren A, Weitz D . Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat Biotechnol. 2015; 33(11):1165-72. PMC: 4636926. DOI: 10.1038/nbt.3383. View