Perspective on the Challenges and Opportunities of Accelerating Drug Discovery with Artificial Intelligence
Overview
Overview
Authors
Affiliations
Affiliations
Soon will be listed here.
References
1.
Brown N, Fiscato M, Segler M, Vaucher A
. GuacaMol: Benchmarking Models for de Novo Molecular Design. J Chem Inf Model. 2019; 59(3):1096-1108.
DOI: 10.1021/acs.jcim.8b00839.
View
2.
David L, Thakkar A, Mercado R, Engkvist O
. Molecular representations in AI-driven drug discovery: a review and practical guide. J Cheminform. 2021; 12(1):56.
PMC: 7495975.
DOI: 10.1186/s13321-020-00460-5.
View
3.
Bender A, Cortes-Ciriano I
. Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 1: Ways to make an impact, and why we are not there yet. Drug Discov Today. 2020; 26(2):511-524.
DOI: 10.1016/j.drudis.2020.12.009.
View
4.
Scannell J, Blanckley A, Boldon H, Warrington B
. Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov. 2012; 11(3):191-200.
DOI: 10.1038/nrd3681.
View
5.
Scannell J, Bosley J
. When Quality Beats Quantity: Decision Theory, Drug Discovery, and the Reproducibility Crisis. PLoS One. 2016; 11(2):e0147215.
PMC: 4749240.
DOI: 10.1371/journal.pone.0147215.
View