6.
Erlandsson M, Futter M, Kothawala D, Kohler S
. Variability in spectral absorbance metrics across boreal lake waters. J Environ Monit. 2012; 14(10):2643-52.
DOI: 10.1039/c2em30266g.
View
7.
Huang M, Li Z, Luo N, Yang R, Wen J, Huang B
. Application potential of biochar in environment: Insight from degradation of biochar-derived DOM and complexation of DOM with heavy metals. Sci Total Environ. 2018; 646:220-228.
DOI: 10.1016/j.scitotenv.2018.07.282.
View
8.
Chen W, Wei R, Yang L, Yang Y, Li G, Ni J
. Characteristics of wood-derived biochars produced at different temperatures before and after deashing: Their different potential advantages in environmental applications. Sci Total Environ. 2018; 651(Pt 2):2762-2771.
DOI: 10.1016/j.scitotenv.2018.10.141.
View
9.
Shang H, Fu Q, Zhang S, Zhu X
. Heating temperature dependence of molecular characteristics and biological response for biomass pyrolysis volatile-derived water-dissolved organic matter. Sci Total Environ. 2020; 757:143749.
DOI: 10.1016/j.scitotenv.2020.143749.
View
10.
Xiang Y, Zhang H, Yu S, Ni J, Wei R, Chen W
. Influence of pyrolysis atmosphere and temperature co-regulation on the sorption of tetracycline onto biochar: structure-performance relationship variation. Bioresour Technol. 2022; 360:127647.
DOI: 10.1016/j.biortech.2022.127647.
View
11.
Mahamuni G, Rutherford J, Davis J, Molnar E, Posner J, Seto E
. Excitation-Emission Matrix Spectroscopy for Analysis of Chemical Composition of Combustion Generated Particulate Matter. Environ Sci Technol. 2020; 54(13):8198-8209.
DOI: 10.1021/acs.est.0c01110.
View
12.
He M, Xu Z, Sun Y, Chan P, Lui I, Tsang D
. Critical impacts of pyrolysis conditions and activation methods on application-oriented production of wood waste-derived biochar. Bioresour Technol. 2021; 341:125811.
DOI: 10.1016/j.biortech.2021.125811.
View
13.
Bian R, Joseph S, Shi W, Li L, Taherymoosavi S, Pan G
. Biochar DOM for plant promotion but not residual biochar for metal immobilization depended on pyrolysis temperature. Sci Total Environ. 2019; 662:571-580.
DOI: 10.1016/j.scitotenv.2019.01.224.
View
14.
Han L, Nie X, Wei J, Gu M, Wu W, Chen M
. Effects of feedstock biopolymer compositions on the physiochemical characteristics of dissolved black carbon from lignocellulose-based biochar. Sci Total Environ. 2020; 751:141491.
DOI: 10.1016/j.scitotenv.2020.141491.
View
15.
Li M, Zhang A, Wu H, Liu H, Lv J
. Predicting potential release of dissolved organic matter from biochars derived from agricultural residues using fluorescence and ultraviolet absorbance. J Hazard Mater. 2017; 334:86-92.
DOI: 10.1016/j.jhazmat.2017.03.064.
View
16.
Wu L, Ni J, Zhang H, Yu S, Wei R, Qian W
. The composition, energy, and carbon stability characteristics of biochars derived from thermo-conversion of biomass in air-limitation, CO, and N at different temperatures. Waste Manag. 2022; 141:136-146.
DOI: 10.1016/j.wasman.2022.01.038.
View
17.
Chun Y, Sheng G, Chiou C, Xing B
. Compositions and sorptive properties of crop residue-derived chars. Environ Sci Technol. 2004; 38(17):4649-55.
DOI: 10.1021/es035034w.
View
18.
Huang M, Li Z, Huang B, Luo N, Zhang Q, Zhai X
. Investigating binding characteristics of cadmium and copper to DOM derived from compost and rice straw using EEM-PARAFAC combined with two-dimensional FTIR correlation analyses. J Hazard Mater. 2017; 344:539-548.
DOI: 10.1016/j.jhazmat.2017.10.022.
View
19.
Quan G, Fan Q, Zimmerman A, Sun J, Cui L, Wang H
. Effects of laboratory biotic aging on the characteristics of biochar and its water-soluble organic products. J Hazard Mater. 2019; 382:121071.
DOI: 10.1016/j.jhazmat.2019.121071.
View
20.
Jia M, Wang F, Bian Y, Stedtfeld R, Liu G, Yu J
. Sorption of sulfamethazine to biochars as affected by dissolved organic matters of different origin. Bioresour Technol. 2017; 248(Pt B):36-43.
DOI: 10.1016/j.biortech.2017.08.082.
View