Silicon Flexoelectronic Transistors
Authors
Affiliations
It is extraordinarily challenging to implement adaptive and seamless interactions between mechanical triggering and current silicon technology for tunable electronics, human-machine interfaces, and micro/nanoelectromechanical systems. Here, we report Si flexoelectronic transistors (SFTs) that can innovatively convert applied mechanical actuations into electrical control signals and achieve directly electromechanical function. Using the strain gradient-induced flexoelectric polarization field in Si as a "gate," the metal-semiconductor interfacial Schottky barriers' heights and the channel width of SFT can be substantially modulated, resulting in tunable electronic transports with specific characteristics. Such SFTs and corresponding perception system can not only create a high strain sensitivity but also identify where the mechanical force is applied. These findings provide an in-depth understanding about the mechanism of interface gating and channel width gating in flexoelectronics and develop highly sensitive silicon-based strain sensors, which has great potential to construct the next-generation silicon electromechanical nanodevices and nanosystems.
Ultralow-pressure-driven polarization switching in ferroelectric membranes.
Yang X, Han L, Ning H, Xu S, Hao B, Li Y Nat Commun. 2024; 15(1):9281.
PMID: 39468059 PMC: 11519889. DOI: 10.1038/s41467-024-53436-6.
Electric pulse-tuned piezotronic effect for interface engineering.
Yu Q, Ge R, Wen J, Xu Q, Lu Z, Liu S Nat Commun. 2024; 15(1):4245.
PMID: 38762580 PMC: 11102472. DOI: 10.1038/s41467-024-48451-6.
Pyro-Phototronic Effect for Advanced Photodetectors and Novel Light Energy Harvesting.
Li F, Peng W, Wang Y, Xue M, He Y Nanomaterials (Basel). 2023; 13(8).
PMID: 37110922 PMC: 10146235. DOI: 10.3390/nano13081336.