» Articles » PMID: 36894536

Understanding the Evolution of Lithium Dendrites at LiAlLaZrO Grain Boundaries Via Operando Microscopy Techniques

Overview
Journal Nat Commun
Specialty Biology
Date 2023 Mar 9
PMID 36894536
Authors
Affiliations
Soon will be listed here.
Abstract

The growth of lithium dendrites in inorganic solid electrolytes is an essential drawback that hinders the development of reliable all-solid-state lithium metal batteries. Generally, ex situ post mortem measurements of battery components show the presence of lithium dendrites at the grain boundaries of the solid electrolyte. However, the role of grain boundaries in the nucleation and dendritic growth of metallic lithium is not yet fully understood. Here, to shed light on these crucial aspects, we report the use of operando Kelvin probe force microscopy measurements to map locally time-dependent electric potential changes in the LiAlLaZrO garnet-type solid electrolyte. We find that the Galvani potential drops at grain boundaries near the lithium metal electrode during plating as a response to the preferential accumulation of electrons. Time-resolved electrostatic force microscopy measurements and quantitative analyses of lithium metal formed at the grain boundaries under electron beam irradiation support this finding. Based on these results, we propose a mechanistic model to explain the preferential growth of lithium dendrites at grain boundaries and their penetration in inorganic solid electrolytes.

Citing Articles

Atomic mechanism of lithium dendrite penetration in solid electrolytes.

Zhang B, Yuan B, Yan X, Han X, Zhang J, Tan H Nat Commun. 2025; 16(1):1906.

PMID: 39994244 PMC: 11850858. DOI: 10.1038/s41467-025-57259-x.


Dendrite formation in solid-state batteries arising from lithium plating and electrolyte reduction.

Liu H, Chen Y, Chien P, Amouzandeh G, Hou D, Truong E Nat Mater. 2025; .

PMID: 39890877 DOI: 10.1038/s41563-024-02094-6.


Compositional flexibility in irreducible antifluorite electrolytes for next-generation battery anodes.

Landgraf V, Tu M, Cheng Z, Vasileiadis A, Wagemaker M, Famprikis T J Mater Chem A Mater. 2024; 13(5):3562-3574.

PMID: 39723171 PMC: 11665506. DOI: 10.1039/d4ta07521h.


Study on terrain acquisition and processing technology of BDS-3 auxiliary mountain highway.

Lin G, Li S, Wang J, Li Y, Qin J, Yan R Sci Rep. 2024; 14(1):24991.

PMID: 39443606 PMC: 11500386. DOI: 10.1038/s41598-024-74877-5.


Spontaneous grain refinement effect of rare earth zinc alloy anodes enables stable zinc batteries.

Chen M, Gong Y, Zhao Y, Song Y, Tang Y, Zeng Z Natl Sci Rev. 2024; 11(7):nwae205.

PMID: 39071097 PMC: 11275459. DOI: 10.1093/nsr/nwae205.


References
1.
Famprikis T, Canepa P, Dawson J, Islam M, Masquelier C . Fundamentals of inorganic solid-state electrolytes for batteries. Nat Mater. 2019; 18(12):1278-1291. DOI: 10.1038/s41563-019-0431-3. View

2.
Sun Y, Gorobstov O, Mu L, Weinstock D, Bouck R, Cha W . X-ray Nanoimaging of Crystal Defects in Single Grains of Solid-State Electrolyte LiAlLaZrO. Nano Lett. 2021; 21(11):4570-4576. DOI: 10.1021/acs.nanolett.1c00315. View

3.
Wang C, Fu K, Kammampata S, McOwen D, Samson A, Zhang L . Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries. Chem Rev. 2020; 120(10):4257-4300. DOI: 10.1021/acs.chemrev.9b00427. View

4.
Ma C, Rangasamy E, Liang C, Sakamoto J, More K, Chi M . Corrigendum: Excellent Stability of a Lithium-Ion-Conducting Solid Electrolyte upon Reversible Li(+)/H(+) Exchange in Aqueous Solutions. Angew Chem Int Ed Engl. 2015; 54(4):1063. DOI: 10.1002/anie.201500056. View

5.
Schirmeisen A, Taskiran A, Fuchs H, Bracht H, Murugavel S, Roling B . Fast interfacial ionic conduction in nanostructured glass ceramics. Phys Rev Lett. 2007; 98(22):225901. DOI: 10.1103/PhysRevLett.98.225901. View