» Articles » PMID: 36867402

Nanoparticle-Based Chimeric Antigen Receptor Therapy for Cancer Immunotherapy

Overview
Date 2023 Mar 3
PMID 36867402
Authors
Affiliations
Soon will be listed here.
Abstract

Adoptive cell therapy with chimeric antigen receptor (CAR)-engineered T cells (CAR-Ts) has emerged as an innovative immunotherapy for hematological cancer treatment. However, the limited effect on solid tumors, complex processes, and excessive manufacturing costs remain as limitations of CAR-T therapy. Nanotechnology provides an alternative to the conventional CAR-T therapy. Owing to their unique physicochemical properties, nanoparticles can not only serve as a delivery platform for drugs but also target specific cells. Nanoparticle-based CAR therapy can be applied not only to T cells but also to CAR-natural killer and CAR-macrophage, compensating for some of their limitations. This review focuses on the introduction of nanoparticle-based advanced CAR immune cell therapy and future perspectives on immune cell reprogramming.

Citing Articles

Nanomaterial-based detection of circulating tumor cells and circulating cancer stem cells for cancer immunotherapy.

Yun Y, Kim S, Lee S, Cho H, Choi J Nano Converg. 2024; 11(1):56.

PMID: 39671082 PMC: 11645384. DOI: 10.1186/s40580-024-00466-x.


Empowering brain tumor management: chimeric antigen receptor macrophage therapy.

Feng F, Shen J, Qi Q, Zhang Y, Ni S Theranostics. 2024; 14(14):5725-5742.

PMID: 39310093 PMC: 11413779. DOI: 10.7150/thno.98290.


A translational framework to DELIVER nanomedicines to the clinic.

Joyce P, Allen C, Alonso M, Ashford M, Bradbury M, Germain M Nat Nanotechnol. 2024; 19(11):1597-1611.

PMID: 39242807 DOI: 10.1038/s41565-024-01754-7.


The next frontier in immunotherapy: potential and challenges of CAR-macrophages.

Li J, Chen P, Ma W Exp Hematol Oncol. 2024; 13(1):76.

PMID: 39103972 PMC: 11302330. DOI: 10.1186/s40164-024-00549-9.


Advancements and challenges in developing in vivo CAR T cell therapies for cancer treatment.

Bui T, Mei H, Sang R, Ortega D, Deng W EBioMedicine. 2024; 106:105266.

PMID: 39094262 PMC: 11345408. DOI: 10.1016/j.ebiom.2024.105266.


References
1.
Dinauer N, Balthasar S, Weber C, Kreuter J, Langer K, von Briesen H . Selective targeting of antibody-conjugated nanoparticles to leukemic cells and primary T-lymphocytes. Biomaterials. 2005; 26(29):5898-906. DOI: 10.1016/j.biomaterials.2005.02.038. View

2.
Guedan S, Calderon H, Posey Jr A, Maus M . Engineering and Design of Chimeric Antigen Receptors. Mol Ther Methods Clin Dev. 2019; 12:145-156. PMC: 6330382. DOI: 10.1016/j.omtm.2018.12.009. View

3.
Maude S, Laetsch T, Buechner J, Rives S, Boyer M, Bittencourt H . Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N Engl J Med. 2018; 378(5):439-448. PMC: 5996391. DOI: 10.1056/NEJMoa1709866. View

4.
Billingsley M, Singh N, Ravikumar P, Zhang R, June C, Mitchell M . Ionizable Lipid Nanoparticle-Mediated mRNA Delivery for Human CAR T Cell Engineering. Nano Lett. 2020; 20(3):1578-1589. PMC: 7313236. DOI: 10.1021/acs.nanolett.9b04246. View

5.
Galvan-Pena S, ONeill L . Metabolic reprograming in macrophage polarization. Front Immunol. 2014; 5:420. PMC: 4151090. DOI: 10.3389/fimmu.2014.00420. View