» Articles » PMID: 36856600

Combining Acoustic Bioprinting with AI-Assisted Raman Spectroscopy for High-Throughput Identification of Bacteria in Blood

Overview
Journal Nano Lett
Specialty Biotechnology
Date 2023 Mar 1
PMID 36856600
Authors
Affiliations
Soon will be listed here.
Abstract

Identifying pathogens in complex samples such as blood, urine, and wastewater is critical to detect infection and inform optimal treatment. Surface-enhanced Raman spectroscopy (SERS) and machine learning (ML) can distinguish among multiple pathogen species, but processing complex fluid samples to sensitively and specifically detect pathogens remains an outstanding challenge. Here, we develop an acoustic bioprinter to digitize samples into millions of droplets, each containing just a few cells, which are identified with SERS and ML. We demonstrate rapid printing of 2 pL droplets from solutions containing , , and blood; when they are mixed with gold nanorods (GNRs), SERS enhancements of up to 1500× are achieved.We then train a ML model and achieve ≥99% classification accuracy from cellularly pure samples and ≥87% accuracy from cellularly mixed samples. We also obtain ≥90% accuracy from droplets with pathogen:blood cell ratios <1. Our combined bioprinting and SERS platform could accelerate rapid, sensitive pathogen detection in clinical, environmental, and industrial settings.

Citing Articles

Nanoplasmonic SERS on fidget spinner for digital bacterial identification.

Karmacharya M, Michael I, Han J, Clarissa E, Gulenko O, Kumar S Microsyst Nanoeng. 2025; 11(1):38.

PMID: 40025021 PMC: 11873259. DOI: 10.1038/s41378-025-00870-1.


In vivo surface-enhanced Raman scattering techniques: nanoprobes, instrumentation, and applications.

Chang H, Hur W, Kang H, Jun B Light Sci Appl. 2025; 14(1):79.

PMID: 39934124 PMC: 11814295. DOI: 10.1038/s41377-024-01718-5.


AI-driven 3D bioprinting for regenerative medicine: From bench to bedside.

Zhang Z, Zhou X, Fang Y, Xiong Z, Zhang T Bioact Mater. 2024; 45:201-230.

PMID: 39651398 PMC: 11625302. DOI: 10.1016/j.bioactmat.2024.11.021.


Designing nanotheranostics with machine learning.

Rao L, Yuan Y, Shen X, Yu G, Chen X Nat Nanotechnol. 2024; 19(12):1769-1781.

PMID: 39362960 DOI: 10.1038/s41565-024-01753-8.


A shifted ratio spectrum strategy for effective subtraction of fluorescence interference in Raman spectra.

Wang Z, Ju S, Zhou X, Ni F, Qiu Y, Zhang R Anal Bioanal Chem. 2024; 416(28):6259-6267.

PMID: 39289204 DOI: 10.1007/s00216-024-05538-9.


References
1.
Indrasekara A, Meyers S, Shubeita S, Feldman L, Gustafsson T, Fabris L . Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime. Nanoscale. 2014; 6(15):8891-9. DOI: 10.1039/c4nr02513j. View

2.
Ou Y, Wen X, Johnson C, Shae D, Ayala O, Webb J . Multimodal Multiplexed Immunoimaging with Nanostars to Detect Multiple Immunomarkers and Monitor Response to Immunotherapies. ACS Nano. 2019; 14(1):651-663. PMC: 7391408. DOI: 10.1021/acsnano.9b07326. View

3.
Fernandes H, Cesar C, Barjas-Castro M . Electrical properties of the red blood cell membrane and immunohematological investigation. Rev Bras Hematol Hemoter. 2012; 33(4):297-301. PMC: 3415751. DOI: 10.5581/1516-8484.20110080. View

4.
Hayashi K, Yamada S, Sakamoto W, Usugi E, Watanabe M, Yogo T . Red Blood Cell-Shaped Microparticles with a Red Blood Cell Membrane Demonstrate Prolonged Circulation Time in Blood. ACS Biomater Sci Eng. 2021; 4(8):2729-2732. DOI: 10.1021/acsbiomaterials.8b00197. View

5.
Moghtader F, Tomak A, Zareie H, Piskin E . Bacterial detection using bacteriophages and gold nanorods by following time-dependent changes in Raman spectral signals. Artif Cells Nanomed Biotechnol. 2018; 46(sup2):122-130. DOI: 10.1080/21691401.2018.1452251. View