Energy-Efficient EEG-Based Scheme for Autism Spectrum Disorder Detection Using Wearable Sensors
Overview
Affiliations
The deployment of wearable wireless systems that collect physiological indicators to aid in diagnosing neurological disorders represents a potential solution for the new generation of e-health systems. Electroencephalography (EEG), a recording of the brain's electrical activity, is a promising physiological test for the diagnosis of autism spectrum disorders. It can identify the abnormalities of the neural system that are associated with autism spectrum disorders. However, streaming EEG samples remotely for classification can reduce the wireless sensor's lifespan and creates doubt regarding the application's feasibility. Therefore, decreasing data transmission may conserve sensor energy and extend the lifespan of wireless sensor networks. This paper suggests the development of a sensor-based scheme for early age autism detection. The proposed scheme implements an energy-efficient method for signal transformation allowing relevant feature extraction for accurate classification using machine learning algorithms. The experimental results indicate an accuracy of 96%, a sensitivity of 100%, and around 95% of F1 score for all used machine learning models. The results also show that our scheme energy consumption is 97% lower than streaming the raw EEG samples.
Fradkin Y, Anguera J, Simon A, De Taboada L, Steingold E Front Child Adolesc Psychiatry. 2025; 4:1477839.
PMID: 39944746 PMC: 11814471. DOI: 10.3389/frcha.2025.1477839.
Commercial Wearables for the Management of People with Autism Spectrum Disorder: A Review.
Hernandez-Capistran J, Alor-Hernandez G, Marin-Vega H, Bustos-Lopez M, Sanchez-Morales L, Sanchez-Cervantes J Biosensors (Basel). 2024; 14(11).
PMID: 39590015 PMC: 11591563. DOI: 10.3390/bios14110556.
Ambiguous facial expression detection for Autism Screening using enhanced YOLOv7-tiny model.
Kumar A, Kumar A, Jayakody D Sci Rep. 2024; 14(1):28501.
PMID: 39557896 PMC: 11574120. DOI: 10.1038/s41598-024-77549-6.
Cho Y, Talboys S JMIR Biomed Eng. 2024; 9:e60399.
PMID: 39405518 PMC: 11522664. DOI: 10.2196/60399.
Detection of autism spectrum disorder (ASD) in children and adults using machine learning.
Farooq M, Tehseen R, Sabir M, Atal Z Sci Rep. 2023; 13(1):9605.
PMID: 37311766 PMC: 10264444. DOI: 10.1038/s41598-023-35910-1.