» Articles » PMID: 36844580

Mapping Spatiotemporal Heterogeneity in Tumor Profiles by Integrating High-Throughput Imaging and Omics Analysis

Overview
Journal ACS Omega
Specialty Chemistry
Date 2023 Feb 27
PMID 36844580
Authors
Affiliations
Soon will be listed here.
Abstract

Intratumoral heterogeneity associates with more aggressive disease progression and worse patient outcomes. Understanding the reasons enabling the emergence of such heterogeneity remains incomplete, which restricts our ability to manage it from a therapeutic perspective. Technological advancements such as high-throughput molecular imaging, single-cell omics, and spatial transcriptomics allow recording of patterns of spatiotemporal heterogeneity in a longitudinal manner, thus offering insights into the multiscale dynamics of its evolution. Here, we review the latest technological trends and biological insights from molecular diagnostics as well as spatial transcriptomics, both of which have witnessed burgeoning growth in the recent past in terms of mapping heterogeneity within tumor cell types as well as the stromal constitution. We also discuss ongoing challenges, indicating possible ways to integrate insights across these methods to have a systems-level spatiotemporal map of heterogeneity in each tumor and a more systematic investigation of the implications of heterogeneity for patient outcomes.

Citing Articles

Radiomics-based machine learning models for differentiating pathological subtypes in cervical cancer: a multicenter study.

Liu H, Lao M, Zhang Y, Chang C, Yin Y, Wang R Front Oncol. 2024; 14:1346336.

PMID: 39355130 PMC: 11442173. DOI: 10.3389/fonc.2024.1346336.


Advances in high throughput cell culture technologies for therapeutic screening and biological discovery applications.

Ryoo H, Kimmel H, Rondo E, Underhill G Bioeng Transl Med. 2024; 9(3):e10627.

PMID: 38818120 PMC: 11135158. DOI: 10.1002/btm2.10627.


Spatiotemporal multi-omics: exploring molecular landscapes in aging and regenerative medicine.

Chu L, Wang W, Gu X, Wu P, Gao C, Zhang Q Mil Med Res. 2024; 11(1):31.

PMID: 38797843 PMC: 11129507. DOI: 10.1186/s40779-024-00537-4.


High HER2 Intratumoral Heterogeneity Is a Predictive Factor for Poor Prognosis in Early-Stage and Locally Advanced HER2-Positive Breast Cancer.

Tanei T, Seno S, Sota Y, Hatano T, Kitahara Y, Abe K Cancers (Basel). 2024; 16(5).

PMID: 38473420 PMC: 10930968. DOI: 10.3390/cancers16051062.


Intratumoral heterogeneity of Ki67 proliferation index outperforms conventional immunohistochemistry prognostic factors in estrogen receptor-positive HER2-negative breast cancer.

Zilenaite-Petrulaitiene D, Rasmusson A, Besusparis J, Valkiuniene R, Augulis R, Laurinaviciene A Virchows Arch. 2024; 486(2):287-298.

PMID: 38217716 DOI: 10.1007/s00428-024-03737-4.


References
1.
Brady L, Kriner M, Coleman I, Morrissey C, Roudier M, True L . Inter- and intra-tumor heterogeneity of metastatic prostate cancer determined by digital spatial gene expression profiling. Nat Commun. 2021; 12(1):1426. PMC: 7930198. DOI: 10.1038/s41467-021-21615-4. View

2.
Herzog E, Taruttis A, Beziere N, Lutich A, Razansky D, Ntziachristos V . Optical imaging of cancer heterogeneity with multispectral optoacoustic tomography. Radiology. 2012; 263(2):461-8. DOI: 10.1148/radiol.11111646. View

3.
Elosua-Bayes M, Nieto P, Mereu E, Gut I, Heyn H . SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Res. 2021; 49(9):e50. PMC: 8136778. DOI: 10.1093/nar/gkab043. View

4.
Yu H, Caldwell C, Mah K, Mozeg D . Coregistered FDG PET/CT-based textural characterization of head and neck cancer for radiation treatment planning. IEEE Trans Med Imaging. 2009; 28(3):374-83. DOI: 10.1109/TMI.2008.2004425. View

5.
Beechem J . High-Plex Spatially Resolved RNA and Protein Detection Using Digital Spatial Profiling: A Technology Designed for Immuno-oncology Biomarker Discovery and Translational Research. Methods Mol Biol. 2019; 2055:563-583. DOI: 10.1007/978-1-4939-9773-2_25. View