6.
Michel S, Loschenberger F, Ametz C, Pachler B, Sparry E, Burstmayr H
. Combining grain yield, protein content and protein quality by multi-trait genomic selection in bread wheat. Theor Appl Genet. 2019; 132(10):2767-2780.
PMC: 6763414.
DOI: 10.1007/s00122-019-03386-1.
View
7.
Oliveira C, Jones A, Fontes E, Reis P
. G-Protein Phosphorylation: Aspects of Binding Specificity and Function in the Plant Kingdom. Int J Mol Sci. 2022; 23(12).
PMC: 9224535.
DOI: 10.3390/ijms23126544.
View
8.
Wu Y, Li M, He Z, Dreisigacker S, Wen W, Jin H
. Development and validation of high-throughput and low-cost STARP assays for genes underpinning economically important traits in wheat. Theor Appl Genet. 2020; 133(8):2431-2450.
DOI: 10.1007/s00122-020-03609-w.
View
9.
Su Q, Zhang X, Zhang W, Zhang N, Song L, Liu L
. QTL Detection for Kernel Size and Weight in Bread Wheat ( L.) Using a High-Density SNP and SSR-Based Linkage Map. Front Plant Sci. 2018; 9:1484.
PMC: 6193082.
DOI: 10.3389/fpls.2018.01484.
View
10.
Huang K, Wang D, Duan P, Zhang B, Xu R, Li N
. WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice. Plant J. 2017; 91(5):849-860.
DOI: 10.1111/tpj.13613.
View
11.
Saini D, Srivastava P, Pal N, Gupta P
. Meta-QTLs, ortho-meta-QTLs and candidate genes for grain yield and associated traits in wheat (Triticum aestivum L.). Theor Appl Genet. 2022; 135(3):1049-1081.
DOI: 10.1007/s00122-021-04018-3.
View
12.
Qu X, Liu J, Xie X, Xu Q, Tang H, Mu Y
. Genetic Mapping and Validation of Loci for Kernel-Related Traits in Wheat ( L.). Front Plant Sci. 2021; 12:667493.
PMC: 8215603.
DOI: 10.3389/fpls.2021.667493.
View
13.
Simmonds J, Scott P, Brinton J, Mestre T, Bush M, Del Blanco A
. A splice acceptor site mutation in TaGW2-A1 increases thousand grain weight in tetraploid and hexaploid wheat through wider and longer grains. Theor Appl Genet. 2016; 129(6):1099-112.
PMC: 4869752.
DOI: 10.1007/s00122-016-2686-2.
View
14.
Liu T, Wu L, Gan X, Chen W, Liu B, Fedak G
. Mapping Quantitative Trait Loci for 1000-Grain Weight in a Double Haploid Population of Common Wheat. Int J Mol Sci. 2020; 21(11).
PMC: 7311974.
DOI: 10.3390/ijms21113960.
View
15.
Kuchel H, Williams K, Langridge P, Eagles H, Jefferies S
. Genetic dissection of grain yield in bread wheat. II. QTL-by-environment interaction. Theor Appl Genet. 2007; 115(7):1015-27.
DOI: 10.1007/s00122-007-0628-8.
View
16.
Cui F, Ding A, Li J, Zhao C, Li X, Feng D
. Wheat kernel dimensions: how do they contribute to kernel weight at an individual QTL level?. J Genet. 2012; 90(3):409-25.
DOI: 10.1007/s12041-011-0103-9.
View
17.
Maphosa L, Langridge P, Taylor H, Parent B, Emebiri L, Kuchel H
. Genetic control of grain yield and grain physical characteristics in a bread wheat population grown under a range of environmental conditions. Theor Appl Genet. 2014; 127(7):1607-24.
DOI: 10.1007/s00122-014-2322-y.
View
18.
Wei S, Li X, Lu Z, Zhang H, Ye X, Zhou Y
. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice. Science. 2022; 377(6604):eabi8455.
DOI: 10.1126/science.abi8455.
View
19.
Cheng R, Kong Z, Zhang L, Xie Q, Jia H, Yu D
. Mapping QTLs controlling kernel dimensions in a wheat inter-varietal RIL mapping population. Theor Appl Genet. 2017; 130(7):1405-1414.
DOI: 10.1007/s00122-017-2896-2.
View
20.
Ma L, Li T, Hao C, Wang Y, Chen X, Zhang X
. TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield. Plant Biotechnol J. 2015; 14(5):1269-80.
PMC: 11389196.
DOI: 10.1111/pbi.12492.
View