» Articles » PMID: 36841878

Real-time Automatic Temperature Regulation During in Vivo MRI-guided Laser-induced Thermotherapy (MR-LITT)

Overview
Journal Sci Rep
Specialty Science
Date 2023 Feb 25
PMID 36841878
Authors
Affiliations
Soon will be listed here.
Abstract

Precise control of tissue temperature during Laser-Induced Thermotherapy (LITT) procedures has the potential to improve the clinical efficiency and safety of such minimally invasive therapies. We present a method to automatically regulate in vivo the temperature increase during LITT using real-time rapid volumetric Magnetic Resonance thermometry (8 slices acquired every second, with an in-plane resolution of 1.4 mmx1.4 mm and a slice thickness of 3 mm) using the proton-resonance frequency (PRF) shift technique. The laser output power is adjusted every second using a feedback control algorithm (proportional-integral-derivative controller) to force maximal tissue temperature in the targeted region to follow a predefined temperature-time profile. The root-mean-square of the difference between the target temperature and the measured temperature ranged between 0.5 °C and 1.4 °C, for temperature increases between + 5 °C to + 30 °C above body temperature and a long heating duration (up to 15 min), showing excellent accuracy and stability of the method. These results were obtained on a 1.5 T clinical MRI scanner, showing a potential immediate clinical application of such a temperature controller during MR-guided LITT.

Citing Articles

Image-Based Monitoring of Thermal Ablation.

Wang X, Zhao S, Zhang A Bioengineering (Basel). 2025; 12(1).

PMID: 39851352 PMC: 11762831. DOI: 10.3390/bioengineering12010078.


Evaluation of a deformable image registration algorithm for image-guided thermal ablation of liver tumors on clinically acquired MR-temperature maps.

Ozenne V, Bour P, Faller T, Desclides M, Denis de Senneville B, Ocal O Med Phys. 2024; 52(2):722-736.

PMID: 39579154 PMC: 11788246. DOI: 10.1002/mp.17526.


Accuracy of 3D real-time MRI temperature mapping in gel phantoms during microwave heating.

Dietrich O, Lentini S, Ocal O, Bour P, Faller T, Ozenne V Eur Radiol Exp. 2024; 8(1):92.

PMID: 39143267 PMC: 11324620. DOI: 10.1186/s41747-024-00479-5.


Ultrasound Image Temperature Monitoring Based on a Temporal-Informed Neural Network.

Han Y, Du Y, He L, Meng X, Li M, Cao F Sensors (Basel). 2024; 24(15).

PMID: 39123982 PMC: 11314660. DOI: 10.3390/s24154934.


Safety and Efficacy of Laser Interstitial Thermal Therapy as Upfront Therapy in Primary Glioblastoma and IDH-Mutant Astrocytoma: A Meta-Analysis.

Pandey A, Chandla A, Mekonnen M, Hovis G, Teton Z, Patel K Cancers (Basel). 2024; 16(11).

PMID: 38893250 PMC: 11171930. DOI: 10.3390/cancers16112131.


References
1.
Skandalakis G, Rivera D, Rizea C, Bouras A, Raj J, Bozec D . Hyperthermia treatment advances for brain tumors. Int J Hyperthermia. 2020; 37(2):3-19. PMC: 7756245. DOI: 10.1080/02656736.2020.1772512. View

2.
Gong W, Wang Z, Liu N, Lin W, Wang X, Xu D . Improving efficiency of adriamycin crossing blood brain barrier by combination of thermosensitive liposomes and hyperthermia. Biol Pharm Bull. 2011; 34(7):1058-64. DOI: 10.1248/bpb.34.1058. View

3.
Dragonu I, de Oliveira P, Laurent C, Mougenot C, Grenier N, Moonen C . Non-invasive determination of tissue thermal parameters from high intensity focused ultrasound treatment monitored by volumetric MRI thermometry. NMR Biomed. 2009; 22(8):843-51. DOI: 10.1002/nbm.1397. View

4.
Karampelas I, Sloan A . Laser-Induced Interstitial Thermotherapy of Gliomas. Prog Neurol Surg. 2018; 32:14-26. DOI: 10.1159/000469676. View

5.
Salomir R, Rata M, Cadis D, Petrusca L, Auboiroux V, Cotton F . Endocavitary thermal therapy by MRI-guided phased-array contact ultrasound: experimental and numerical studies on the multi-input single-output PID temperature controller's convergence and stability. Med Phys. 2009; 36(10):4726-41. DOI: 10.1118/1.3215534. View