» Articles » PMID: 36836460

Radiomics in Lung Metastases: A Systematic Review

Abstract

Due to the rich vascularization and lymphatic drainage of the pulmonary tissue, lung metastases (LM) are not uncommon in patients with cancer. Radiomics is an active research field aimed at the extraction of quantitative data from diagnostic images, which can serve as useful imaging biomarkers for a more effective, personalized patient care. Our purpose is to illustrate the current applications, strengths and weaknesses of radiomics for lesion characterization, treatment planning and prognostic assessment in patients with LM, based on a systematic review of the literature.

Citing Articles

Retrospective Analysis Comparing Lung-RADS v2022 and British Thoracic Society Guidelines for Differentiating Lung Metastases from Primary Lung Cancer.

Stana L, Mederle A, Avram C, Bratosin F, Barata P Biomedicines. 2025; 13(1.

PMID: 39857714 PMC: 11762811. DOI: 10.3390/biomedicines13010130.


Clinical features and risk of multiple primary malignancies after endoscopic treatment in patients with early esophageal squamous cell carcinoma: a retrospective cohort study.

Liu H, Zhang Q, Zhang S, Zhang Y, Song R, Li P J Gastrointest Oncol. 2024; 15(4):1386-1398.

PMID: 39279981 PMC: 11399870. DOI: 10.21037/jgo-24-299.


Fusion of shallow and deep features from F-FDG PET/CT for predicting EGFR-sensitizing mutations in non-small cell lung cancer.

Yao X, Zhu Y, Huang Z, Wang Y, Cong S, Wan L Quant Imaging Med Surg. 2024; 14(8):5460-5472.

PMID: 39144023 PMC: 11320501. DOI: 10.21037/qims-23-1028.


Artificial intelligence-based application in multiple myeloma.

Piscopo L, Scaglione M, Klain M Eur J Nucl Med Mol Imaging. 2024; 51(7):1923-1925.

PMID: 38587646 DOI: 10.1007/s00259-024-06711-z.


Transfer-Learning Deep Radiomics and Hand-Crafted Radiomics for Classifying Lymph Nodes from Contrast-Enhanced Computed Tomography in Lung Cancer.

Laqua F, Woznicki P, Bley T, Schoneck M, Rinneburger M, Weisthoff M Cancers (Basel). 2023; 15(10).

PMID: 37345187 PMC: 10216416. DOI: 10.3390/cancers15102850.


References
1.
Gao W, Wang W, Song D, Yang C, Zhu K, Zeng M . A predictive model integrating deep and radiomics features based on gadobenate dimeglumine-enhanced MRI for postoperative early recurrence of hepatocellular carcinoma. Radiol Med. 2022; 127(3):259-271. DOI: 10.1007/s11547-021-01445-6. View

2.
Wang F, Zheng H, Li J, Li P, Zheng C, Chen Q . Prediction of recurrence-free survival and adjuvant therapy benefit in patients with gastrointestinal stromal tumors based on radiomics features. Radiol Med. 2022; 127(10):1085-1097. DOI: 10.1007/s11547-022-01549-7. View

3.
Kirienko M, Cozzi L, Rossi A, Voulaz E, Antunovic L, Fogliata A . Ability of FDG PET and CT radiomics features to differentiate between primary and metastatic lung lesions. Eur J Nucl Med Mol Imaging. 2018; 45(10):1649-1660. DOI: 10.1007/s00259-018-3987-2. View

4.
Zhong F, Liu Z, An W, Wang B, Zhang H, Liu Y . Radiomics Study for Discriminating Second Primary Lung Cancers From Pulmonary Metastases in Pulmonary Solid Lesions. Front Oncol. 2022; 11:801213. PMC: 8761898. DOI: 10.3389/fonc.2021.801213. View

5.
Lee Y, Tan Y, Oon C . Molecular targeted therapy: Treating cancer with specificity. Eur J Pharmacol. 2018; 834:188-196. DOI: 10.1016/j.ejphar.2018.07.034. View