6.
Zhang L, Zhu R, Feng A, Zhao C, Chen L, Feng G
. Redox deracemization of β,γ-alkynyl α-amino esters. Chem Sci. 2021; 11(17):4444-4449.
PMC: 8159540.
DOI: 10.1039/d0sc00944j.
View
7.
Rueping M, Nachtsheim B, Ieawsuwan W, Atodiresei I
. Modulating the acidity: highly acidic Brønsted acids in asymmetric catalysis. Angew Chem Int Ed Engl. 2011; 50(30):6706-20.
DOI: 10.1002/anie.201100169.
View
8.
He K, Tan F, Zhou C, Zhou G, Yang X, Li Y
. Acceptorless Dehydrogenation of N-Heterocycles by Merging Visible-Light Photoredox Catalysis and Cobalt Catalysis. Angew Chem Int Ed Engl. 2017; 56(11):3080-3084.
DOI: 10.1002/anie.201612486.
View
9.
Prentice C, Morrisson J, Smith A, Zysman-Colman E
. Recent developments in enantioselective photocatalysis. Beilstein J Org Chem. 2020; 16:2363-2441.
PMC: 7537410.
DOI: 10.3762/bjoc.16.197.
View
10.
Brimioulle R, Lenhart D, Maturi M, Bach T
. Enantioselective catalysis of photochemical reactions. Angew Chem Int Ed Engl. 2015; 54(13):3872-90.
DOI: 10.1002/anie.201411409.
View
11.
Shin N, Ryss J, Zhang X, Miller S, Knowles R
. Lightdriven deracemization enabled by excitedstate electron transfer. Science. 2019; 366(6463):364-369.
PMC: 6939311.
DOI: 10.1126/science.aay2204.
View
12.
Lu R, Li Y, Zhao J, Li J, Wang S, Liu L
. Redox deracemization of 1,3,4,9-tetrahydropyrano[3,4-b]indoles. Chem Commun (Camb). 2018; 54(35):4445-4448.
DOI: 10.1039/c8cc01276h.
View
13.
Seel C, Gulder T
. Biocatalysis Fueled by Light: On the Versatile Combination of Photocatalysis and Enzymes. Chembiochem. 2019; 20(15):1871-1897.
DOI: 10.1002/cbic.201800806.
View
14.
Rueping M, Bootwicha T, Sugiono E
. Continuous-flow catalytic asymmetric hydrogenations: Reaction optimization using FTIR inline analysis. Beilstein J Org Chem. 2012; 8:300-7.
PMC: 3302093.
DOI: 10.3762/bjoc.8.32.
View
15.
Rueping M, Kuenkel A, Atodiresei I
. Chiral Brønsted acids in enantioselective carbonyl activations--activation modes and applications. Chem Soc Rev. 2011; 40(9):4539-49.
DOI: 10.1039/c1cs15087a.
View
16.
Wang T, Zhuo L, Li Z, Chen F, Ding Z, He Y
. Highly enantioselective hydrogenation of quinolines using phosphine-free chiral cationic ruthenium catalysts: scope, mechanism, and origin of enantioselectivity. J Am Chem Soc. 2011; 133(25):9878-91.
DOI: 10.1021/ja2023042.
View
17.
Yoon T
. Photochemical Stereocontrol Using Tandem Photoredox-Chiral Lewis Acid Catalysis. Acc Chem Res. 2016; 49(10):2307-2315.
PMC: 5083251.
DOI: 10.1021/acs.accounts.6b00280.
View
18.
Bauer A, Westkamper F, Grimme S, Bach T
. Catalytic enantioselective reactions driven by photoinduced electron transfer. Nature. 2005; 436(7054):1139-40.
DOI: 10.1038/nature03955.
View
19.
Kratz T, Steinbach P, Breitenlechner S, Storch G, Bannwarth C, Bach T
. Photochemical Deracemization of Chiral Alkenes via Triplet Energy Transfer. J Am Chem Soc. 2022; 144(23):10133-10138.
DOI: 10.1021/jacs.2c02511.
View
20.
Rono L, Yayla H, Wang D, Armstrong M, Knowles R
. Enantioselective photoredox catalysis enabled by proton-coupled electron transfer: development of an asymmetric aza-pinacol cyclization. J Am Chem Soc. 2013; 135(47):17735-8.
DOI: 10.1021/ja4100595.
View