» Articles » PMID: 36807980

Molecular Basis of Stepwise Cyclic Tetra-adenylate Cleavage by the Type III CRISPR Ring Nuclease Crn1/Sso2081

Overview
Specialty Biochemistry
Date 2023 Feb 22
PMID 36807980
Authors
Affiliations
Soon will be listed here.
Abstract

The cyclic oligoadenylates (cOAs) act as second messengers of the type III CRISPR immunity system through activating the auxiliary nucleases for indiscriminate RNA degradation. The cOA-degrading nucleases (ring nucleases) provide an 'off-switch' regulation of the signaling, thereby preventing cell dormancy or cell death. Here, we describe the crystal structures of the founding member of CRISPR-associated ring nuclease 1 (Crn1) Sso2081 from Saccharolobus solfataricus, alone, bound to phosphate ions or cA4 in both pre-cleavage and cleavage intermediate states. These structures together with biochemical characterizations establish the molecular basis of cA4 recognition and catalysis by Sso2081. The conformational changes in the C-terminal helical insert upon the binding of phosphate ions or cA4 reveal a gate-locking mechanism for ligand binding. The critical residues and motifs identified in this study provide a new insight to distinguish between cOA-degrading and -nondegrading CARF domain-containing proteins.

Citing Articles

The SAVED domain of the type III CRISPR protease CalpL is a ring nuclease.

Binder S, Schneberger N, Schmitz M, Engeser M, Geyer M, Rouillon C Nucleic Acids Res. 2024; 52(17):10520-10532.

PMID: 39166476 PMC: 11417357. DOI: 10.1093/nar/gkae676.


Structural insight into the Csx1-Crn2 fusion self-limiting ribonuclease of type III CRISPR system.

Zhang D, Du L, Gao H, Yuan C, Lin Z Nucleic Acids Res. 2024; 52(14):8419-8430.

PMID: 38967023 PMC: 11317161. DOI: 10.1093/nar/gkae569.


Molecular mechanism of allosteric activation of the CRISPR ribonuclease Csm6 by cyclic tetra-adenylate.

Du L, Zhu Q, Lin Z EMBO J. 2024; 43(2):304-315.

PMID: 38177499 PMC: 10897365. DOI: 10.1038/s44318-023-00017-w.

References
1.
Amitai G, Sorek R . CRISPR-Cas adaptation: insights into the mechanism of action. Nat Rev Microbiol. 2016; 14(2):67-76. DOI: 10.1038/nrmicro.2015.14. View

2.
Rostol J, Marraffini L . Non-specific degradation of transcripts promotes plasmid clearance during type III-A CRISPR-Cas immunity. Nat Microbiol. 2019; 4(4):656-662. PMC: 6430669. DOI: 10.1038/s41564-018-0353-x. View

3.
Bunkoczi G, Echols N, McCoy A, Oeffner R, Adams P, Read R . Phaser.MRage: automated molecular replacement. Acta Crystallogr D Biol Crystallogr. 2013; 69(Pt 11):2276-86. PMC: 3817702. DOI: 10.1107/S0907444913022750. View

4.
Jackson S, McKenzie R, Fagerlund R, Kieper S, Fineran P, Brouns S . CRISPR-Cas: Adapting to change. Science. 2017; 356(6333). DOI: 10.1126/science.aal5056. View

5.
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S . CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007; 315(5819):1709-12. DOI: 10.1126/science.1138140. View