» Articles » PMID: 36798524

Effects of Subchronic Propofol Administration on the Proliferation and Differentiation of Neural Stem Cells in Rat Hippocampus

Overview
Specialty Pharmacology
Date 2023 Feb 17
PMID 36798524
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Although controversial, experimental data suggest the use of propofol may be associated with neurotoxicity. The mechanisms responsible for propofol neurotoxicity in animals are not yet clear.

Objective: This study aimed to determine the effects of propofol on the proliferation of neural stem cells in rat hippocampus and the mechanisms underlying these effects.

Methods: Forty-five adult male Sprague-Dawley rats were randomly divided into 5 groups: Control (N group), intralipid (V group), 30 mg/kg propofol (Prop30 group), 60 mg/kg propofol (Prop60 group), and 120 mg/kg propofol (Prop120 group). The rats in all groups received 5, once daily intraperitoneal injections. For each of the 5 days, the N group received 6 mL/kg normal saline, the V group received 6 mL/kg fat emulsion, the Prop30 group received 30 mg/kg propofol, the Prop60 group received 60 mg/kg propofol, and the Prop120 group received 120 mg/kg propofol. Memory function was scored daily using the Morris water maze test. Immunofluorescence staining was used to histologically monitor the proliferation and differentiation of the rats' hippocampal neural stem cells, and real time quantitative polymerase chain reaction and Western blotting were used to determine the expression of Notch3, Hes1, and Hes5.

Results: Compared with the N group, the Prop120 group exhibited reduced learning and memory, whereas there were no significant differences for the Prop60 group. The number of β-tubulin III cells increased in the Prop60 group, but decreased in the Prop120 group. Compared with the N group, the relative expression of Notch3 and Hes5 increased significantly in the Prop60 group, whereas this expression decreased in the Prop120 group.

Conclusions: These data demonstrate that repeated, subchronic (5 days) intraperitoneal injections of 60 mg/kg propofol can effectively promote rat hippocampal neural stem cells proliferation and differentiation, and that this is likely mediated by its effects on the Notch3-Hes5 pathway.

References
1.
Liu C, Ying Z, Li Z, Zhang L, Li X, Gong W . Danzhi Xiaoyao Powder Promotes Neuronal Regeneration by Downregulating Notch Signaling Pathway in the Treatment of Generalized Anxiety Disorder. Front Pharmacol. 2021; 12:772576. PMC: 8666953. DOI: 10.3389/fphar.2021.772576. View

2.
Yang Y, Yi J, Pan M, Hu B, Duan H . Edaravone Alleviated Propofol-Induced Neurotoxicity in Developing Hippocampus by mBDNF/TrkB/PI3K Pathway. Drug Des Devel Ther. 2021; 15:1409-1422. PMC: 8020057. DOI: 10.2147/DDDT.S294557. View

3.
Gao H, Huang N, Wang W, Zhang L, Cai L, Chen M . Astragalus Flavone Induces Proliferation and Differentiation of Neural Stem Cells in a Cerebral Infarction Model. Med Sci Monit. 2022; 28:e933830. PMC: 8915658. DOI: 10.12659/MSM.933830. View

4.
Ehret F, Vogler S, Pojar S, Elliott D, Bradke F, Steiner B . Mouse model of CADASIL reveals novel insights into Notch3 function in adult hippocampal neurogenesis. Neurobiol Dis. 2015; 75:131-41. DOI: 10.1016/j.nbd.2014.12.018. View

5.
Ehret F, Moreno Traspas R, Neumuth M, Hamann B, Lasse D, Kempermann G . Notch3-Dependent Effects on Adult Neurogenesis and Hippocampus-Dependent Learning in a Modified Transgenic Model of CADASIL. Front Aging Neurosci. 2021; 13:617733. PMC: 8177050. DOI: 10.3389/fnagi.2021.617733. View