» Articles » PMID: 36794834

Automatized Detection of Crohn's Disease in Intestinal Ultrasound Using Convolutional Neural Network

Overview
Specialty Gastroenterology
Date 2023 Feb 16
PMID 36794834
Authors
Affiliations
Soon will be listed here.
Abstract

Introduction: The use of intestinal ultrasound (IUS) for the diagnosis and follow-up of inflammatory bowel disease is steadily growing. Although access to educational platforms of IUS is feasible, novice ultrasound operators lack experience in performing and interpreting IUS. An artificial intelligence (AI)-based operator supporting system that automatically detects bowel wall inflammation may simplify the use of IUS by less experienced operators. Our aim was to develop and validate an artificial intelligence module that can distinguish bowel wall thickening (a surrogate of bowel inflammation) from normal bowel images of IUS.

Methods: We used a self-collected image data set to develop and validate a convolutional neural network module that can distinguish bowel wall thickening >3 mm (a surrogate of bowel inflammation) from normal bowel images of IUS.

Results: The data set consisted of 1008 images, distributed uniformly (50% normal images, 50% abnormal images). Execution of the training phase and the classification phase was performed using 805 and 203 images, respectively. The overall accuracy, sensitivity, and specificity for detection of bowel wall thickening were 90.1%, 86.4%, and 94%, respectively. The network exhibited an average area under the ROC curve of 0.9777 for this task.

Conclusions: We developed a machine-learning module based on a pretrained convolutional neural network that is highly accurate in the recognition of bowel wall thickening on intestinal ultrasound images in Crohn's disease. Incorporation of convolutional neural network to IUS may facilitate the use of IUS by inexperienced operators and allow automatized detection of bowel inflammation and standardization of IUS imaging interpretation.

Citing Articles

Artificial intelligence to revolutionize IBD clinical trials: a comprehensive review.

Sedano R, Solitano V, Vuyyuru S, Yuan Y, Hanzel J, Ma C Therap Adv Gastroenterol. 2025; 18:17562848251321915.

PMID: 39996136 PMC: 11848901. DOI: 10.1177/17562848251321915.


Defining mucosal healing in randomized controlled trials of inflammatory bowel disease: A systematic review and future perspective.

Parigi T, Solitano V, Armuzzi A, Barreiro de Acosta M, Begun J, Ben-Horin S United European Gastroenterol J. 2024; 12(9):1266-1279.

PMID: 39367753 PMC: 11578850. DOI: 10.1002/ueg2.12671.


Radiomics-Based Analysis of Intestinal Ultrasound Images for Inflammatory Bowel Disease: A Feasibility Study.

Gu P, Chang J, Carter D, McGovern D, Moore J, Wang P Crohns Colitis 360. 2024; 6(2):otae034.

PMID: 38903657 PMC: 11187771. DOI: 10.1093/crocol/otae034.


Current Developments and Role of Intestinal Ultrasound including the Advent of AI.

Tagliamonte G, Santagata F, Fraquelli M Diagnostics (Basel). 2024; 14(7).

PMID: 38611672 PMC: 11011653. DOI: 10.3390/diagnostics14070759.


Convolutional neural network deep learning model accurately detects rectal cancer in endoanal ultrasounds.

Carter D, Bykhovsky D, Hasky A, Mamistvalov I, Zimmer Y, Ram E Tech Coloproctol. 2024; 28(1):44.

PMID: 38561492 PMC: 10984882. DOI: 10.1007/s10151-024-02917-3.