» Articles » PMID: 36794811

How Longitudinal Data Can Contribute to Our Understanding of Host Genetic Effects on the Gut Microbiome

Overview
Journal Gut Microbes
Date 2023 Feb 16
PMID 36794811
Authors
Affiliations
Soon will be listed here.
Abstract

A key component of microbiome research is understanding the role of host genetic influence on gut microbial composition. However, it can be difficult to link host genetics with gut microbial composition because host genetic similarity and environmental similarity are often correlated. Longitudinal microbiome data can supplement our understanding of the relative role of genetic processes in the microbiome. These data can reveal environmentally contingent host genetic effects, both in terms of controlling for environmental differences and in comparing how genetic effects differ by environment. Here, we explore four research areas where longitudinal data could lend new insights into host genetic effects on the microbiome: microbial heritability, microbial plasticity, microbial stability, and host and microbiome population genetics. We conclude with a discussion of methodological considerations for future studies.

Citing Articles

miMatch: a microbial metabolic background matching tool for mitigating host confounding in metagenomics research.

Liu L, Cao S, Lin W, Gao Z, Yang L, Zhu L Gut Microbes. 2024; 16(1):2434029.

PMID: 39601293 PMC: 11610556. DOI: 10.1080/19490976.2024.2434029.


impacts microbiome diversity and fitness-associated traits for in a seasonally fluctuating environment.

Henry L, Fernandez M, Wolf S, Abhyankar V, Ayroles J Ecol Evol. 2024; 14(7):e70004.

PMID: 39041013 PMC: 11262851. DOI: 10.1002/ece3.70004.


Temporal patterns of gut microbiota in lemurs (Eulemur rubriventer) living in intact and disturbed habitats in a novel sample type.

Grieneisen L, Hays A, Cook E, Blekhman R, Tecot S Am J Primatol. 2024; 87(1):e23656.

PMID: 38873762 PMC: 11650932. DOI: 10.1002/ajp.23656.


Long-distance movement dynamics shape host microbiome richness and turnover.

Pearman W, Duffy G, Gemmell N, Morales S, Fraser C FEMS Microbiol Ecol. 2024; 100(7).

PMID: 38857884 PMC: 11212666. DOI: 10.1093/femsec/fiae089.


Microbiome Dynamics: A Paradigm Shift in Combatting Infectious Diseases.

Kamel M, Aleya S, Alsubih M, Aleya L J Pers Med. 2024; 14(2).

PMID: 38392650 PMC: 10890469. DOI: 10.3390/jpm14020217.

References
1.
Brewer S, Twittenhoff C, Kortmann J, Brubaker S, Honeycutt J, Massis L . A Salmonella Typhi RNA thermosensor regulates virulence factors and innate immune evasion in response to host temperature. PLoS Pathog. 2021; 17(3):e1009345. PMC: 7954313. DOI: 10.1371/journal.ppat.1009345. View

2.
Lim S, Bordenstein S . An introduction to phylosymbiosis. Proc Biol Sci. 2020; 287(1922):20192900. PMC: 7126058. DOI: 10.1098/rspb.2019.2900. View

3.
Rudman S, Greenblum S, Hughes R, Rajpurohit S, Kiratli O, Lowder D . Microbiome composition shapes rapid genomic adaptation of . Proc Natl Acad Sci U S A. 2019; 116(40):20025-20032. PMC: 6778213. DOI: 10.1073/pnas.1907787116. View

4.
Goodrich J, Davenport E, Beaumont M, Jackson M, Knight R, Ober C . Genetic Determinants of the Gut Microbiome in UK Twins. Cell Host Microbe. 2016; 19(5):731-43. PMC: 4915943. DOI: 10.1016/j.chom.2016.04.017. View

5.
Wilson A, Reale D, Clements M, Morrissey M, Postma E, Walling C . An ecologist's guide to the animal model. J Anim Ecol. 2010; 79(1):13-26. DOI: 10.1111/j.1365-2656.2009.01639.x. View