» Articles » PMID: 36792670

A Molecular Atlas Reveals the Tri-sectional Spinning Mechanism of Spider Dragline Silk

Abstract

The process of natural silk production in the spider major ampullate (Ma) gland endows dragline silk with extraordinary mechanical properties and the potential for biomimetic applications. However, the precise genetic roles of the Ma gland during this process remain unknown. Here, we performed a systematic molecular atlas of dragline silk production through a high-quality genome assembly for the golden orb-weaving spider Trichonephila clavata and a multiomics approach to defining the Ma gland tri-sectional architecture: Tail, Sac, and Duct. We uncovered a hierarchical biosynthesis of spidroins, organic acids, lipids, and chitin in the sectionalized Ma gland dedicated to fine silk constitution. The ordered secretion of spidroins was achieved by the synergetic regulation of epigenetic and ceRNA signatures for genomic group-distributed spidroin genes. Single-cellular and spatial RNA profiling identified ten cell types with partitioned functional division determining the tri-sectional organization of the Ma gland. Convergence analysis and genetic manipulation further validated that this tri-sectional architecture of the silk gland was analogous across Arthropoda and inextricably linked with silk formation. Collectively, our study provides multidimensional data that significantly expand the knowledge of spider dragline silk generation and ultimately benefit innovation in spider-inspired fibers.

Citing Articles

Effects of Mini-Spidroin Repeat Region on the Mechanical Properties of Artificial Spider Silk Fibers.

Schmuck B, Greco G, Shilkova O, Rising A ACS Omega. 2024; 9(41):42423-42432.

PMID: 39431068 PMC: 11483375. DOI: 10.1021/acsomega.4c06031.


Strategies for Making High-Performance Artificial Spider Silk Fibers.

Schmuck B, Greco G, Pessatti T, Sonavane S, Langwallner V, Arndt T Adv Funct Mater. 2024; 34(35):2305040.

PMID: 39355086 PMC: 11440630. DOI: 10.1002/adfm.202305040.


Origin, structure, and composition of the spider major ampullate silk fiber revealed by genomics, proteomics, and single-cell and spatial transcriptomics.

Sonavane S, Hassan S, Chatterjee U, Soler L, Holm L, Mollbrink A Sci Adv. 2024; 10(33):eadn0597.

PMID: 39141739 PMC: 11323941. DOI: 10.1126/sciadv.adn0597.


A trade-off in evolution: the adaptive landscape of spiders without venom glands.

Zhang Y, Shen Y, Jin P, Zhu B, Lin Y, Jiang T Gigascience. 2024; 13.

PMID: 39101784 PMC: 11299198. DOI: 10.1093/gigascience/giae048.


Identification and Evolutionary Analysis of the Widely Distributed CAP Superfamily in Spider Venom.

Jiang H, Wang Y, Zhang G, Jia A, Wei Z, Wang Y Toxins (Basel). 2024; 16(6).

PMID: 38922134 PMC: 11209345. DOI: 10.3390/toxins16060240.


References
1.
Vaser R, Sovic I, Nagarajan N, Sikic M . Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017; 27(5):737-746. PMC: 5411768. DOI: 10.1101/gr.214270.116. View

2.
Kono N, Nakamura H, Ohtoshi R, Pedrazzoli Moran D, Shinohara A, Yoshida Y . Orb-weaving spider Araneus ventricosus genome elucidates the spidroin gene catalogue. Sci Rep. 2019; 9(1):8380. PMC: 6557832. DOI: 10.1038/s41598-019-44775-2. View

3.
Li J, Li S, Huang J, Qadeer Khan A, An B, Zhou X . Spider Silk-Inspired Artificial Fibers. Adv Sci (Weinh). 2021; 9(5):e2103965. PMC: 8844500. DOI: 10.1002/advs.202103965. View

4.
Ramirez F, Dundar F, Diehl S, Gruning B, Manke T . deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res. 2014; 42(Web Server issue):W187-91. PMC: 4086134. DOI: 10.1093/nar/gku365. View

5.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N . The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009; 25(16):2078-9. PMC: 2723002. DOI: 10.1093/bioinformatics/btp352. View