» Articles » PMID: 36755098

Dissecting Cell Identity Via Network Inference and in Silico Gene Perturbation

Overview
Journal Nature
Specialty Science
Date 2023 Feb 9
PMID 36755098
Authors
Affiliations
Soon will be listed here.
Abstract

Cell identity is governed by the complex regulation of gene expression, represented as gene-regulatory networks. Here we use gene-regulatory networks inferred from single-cell multi-omics data to perform in silico transcription factor perturbations, simulating the consequent changes in cell identity using only unperturbed wild-type data. We apply this machine-learning-based approach, CellOracle, to well-established paradigms-mouse and human haematopoiesis, and zebrafish embryogenesis-and we correctly model reported changes in phenotype that occur as a result of transcription factor perturbation. Through systematic in silico transcription factor perturbation in the developing zebrafish, we simulate and experimentally validate a previously unreported phenotype that results from the loss of noto, an established notochord regulator. Furthermore, we identify an axial mesoderm regulator, lhx1a. Together, these results show that CellOracle can be used to analyse the regulation of cell identity by transcription factors, and can provide mechanistic insights into development and differentiation.

Citing Articles

A large-scale benchmark for network inference from single-cell perturbation data.

Chevalley M, Roohani Y, Mehrjou A, Leskovec J, Schwab P Commun Biol. 2025; 8(1):412.

PMID: 40069299 PMC: 11897147. DOI: 10.1038/s42003-025-07764-y.


Single-nucleus analysis of thoracic perivascular adipose tissue reveals critical changes in cell composition, communication, and gene regulatory networks induced by a high fat hypertensive diet.

Terrian L, Thompson J, Bowman D, Panda V, Contreras G, Rockwell C bioRxiv. 2025; .

PMID: 39990347 PMC: 11844537. DOI: 10.1101/2025.02.13.636878.


Multiomics Research: Principles and Challenges in Integrated Analysis.

Luo Y, Zhao C, Chen F Biodes Res. 2025; 6:0059.

PMID: 39990095 PMC: 11844812. DOI: 10.34133/bdr.0059.


Unveiling the cell-type-specific landscape of cellular senescence through single-cell transcriptomics using SenePy.

Sanborn M, Wang X, Gao S, Dai Y, Rehman J Nat Commun. 2025; 16(1):1884.

PMID: 39987255 PMC: 11846890. DOI: 10.1038/s41467-025-57047-7.


YY1 mutations disrupt corticogenesis through a cell type specific rewiring of cell-autonomous and non-cell-autonomous transcriptional programs.

Pereira M, Finazzi V, Rizzuti L, Aprile D, Aiello V, Mollica L Mol Psychiatry. 2025; .

PMID: 39987231 DOI: 10.1038/s41380-025-02929-x.


References
1.
Davidson E, Erwin D . Gene regulatory networks and the evolution of animal body plans. Science. 2006; 311(5762):796-800. DOI: 10.1126/science.1113832. View

2.
Adamson B, Norman T, Jost M, Cho M, Nunez J, Chen Y . A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response. Cell. 2016; 167(7):1867-1882.e21. PMC: 5315571. DOI: 10.1016/j.cell.2016.11.048. View

3.
Dixit A, Parnas O, Li B, Chen J, Fulco C, Jerby-Arnon L . Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens. Cell. 2016; 167(7):1853-1866.e17. PMC: 5181115. DOI: 10.1016/j.cell.2016.11.038. View

4.
Datlinger P, Rendeiro A, Schmidl C, Krausgruber T, Traxler P, Klughammer J . Pooled CRISPR screening with single-cell transcriptome readout. Nat Methods. 2017; 14(3):297-301. PMC: 5334791. DOI: 10.1038/nmeth.4177. View

5.
Ji Y, Lotfollahi M, Wolf F, Theis F . Machine learning for perturbational single-cell omics. Cell Syst. 2021; 12(6):522-537. DOI: 10.1016/j.cels.2021.05.016. View