» Articles » PMID: 36755035

Engineering the Lymph Node Environment Promotes Antigen-specific Efficacy in Type 1 Diabetes and Islet Transplantation

Abstract

Antigen-specific tolerance is a key goal of experimental immunotherapies for autoimmune disease and allograft rejection. This outcome could selectively inhibit detrimental inflammatory immune responses without compromising functional protective immunity. A major challenge facing antigen-specific immunotherapies is ineffective control over immune signal targeting and integration, limiting efficacy and causing systemic non-specific suppression. Here we use intra-lymph node injection of diffusion-limited degradable microparticles that encapsulate self-antigens with the immunomodulatory small molecule, rapamycin. We show this strategy potently inhibits disease during pre-clinical type 1 diabetes and allogenic islet transplantation. Antigen and rapamycin are required for maximal efficacy, and tolerance is accompanied by expansion of antigen-specific regulatory T cells in treated and untreated lymph nodes. The antigen-specific tolerance in type 1 diabetes is systemic but avoids non-specific immune suppression. Further, microparticle treatment results in the development of tolerogenic structural microdomains in lymph nodes. Finally, these local structural and functional changes in lymph nodes promote memory markers among antigen-specific regulatory T cells, and tolerance that is durable. This work supports intra-lymph node injection of tolerogenic microparticles as a powerful platform to promote antigen-dependent efficacy in type 1 diabetes and allogenic islet transplantation.

Citing Articles

Lymph nodes as gatekeepers of autoimmune diseases.

OByrne A, van Baarsen L RMD Open. 2024; 10(4.

PMID: 39658052 PMC: 11647372. DOI: 10.1136/rmdopen-2024-004097.


Antigen-specific T cell immunotherapy by in vivo mRNA delivery.

Su F, Siebart J, Chan C, Wang M, Yao X, Trenkle A bioRxiv. 2024; .

PMID: 39554121 PMC: 11566043. DOI: 10.1101/2024.10.29.620946.


Harnessing cellular therapeutics for type 1 diabetes mellitus: progress, challenges, and the road ahead.

Grattoni A, Korbutt G, Tomei A, Garcia A, Pepper A, Stabler C Nat Rev Endocrinol. 2024; 21(1):14-30.

PMID: 39227741 DOI: 10.1038/s41574-024-01029-0.


Unlocking Transplant Tolerance with Biomaterials.

Pham J, Coronel M Adv Healthc Mater. 2024; 14(5):e2400965.

PMID: 38843866 PMC: 11834385. DOI: 10.1002/adhm.202400965.


Advancing immunotherapy using biomaterials to control tissue, cellular, and molecular level immune signaling in skin.

Shah S, Oakes R, Jewell C Adv Drug Deliv Rev. 2024; 209:115315.

PMID: 38670230 PMC: 11111363. DOI: 10.1016/j.addr.2024.115315.


References
1.
Simon T, Li L, Wagner C, Zhang T, Saxena V, Brinkman C . Differential Regulation of T-cell Immunity and Tolerance by Stromal Laminin Expressed in the Lymph Node. Transplantation. 2019; 103(10):2075-2089. PMC: 6768765. DOI: 10.1097/TP.0000000000002774. View

2.
Froimchuk E, Oakes R, Kapnick S, Yanes A, Jewell C . Biophysical Properties of Self-Assembled Immune Signals Impact Signal Processing and the Nature of Regulatory Immune Function. Nano Lett. 2021; 21(9):3762-3771. PMC: 8119350. DOI: 10.1021/acs.nanolett.0c05118. View

3.
Almeida J, Chen A, Foster A, Drezek R . In vivo biodistribution of nanoparticles. Nanomedicine (Lond). 2011; 6(5):815-35. DOI: 10.2217/nnm.11.79. View

4.
Ricordi C, Tzakis A, Carroll P, Zeng Y, Rilo H, Alejandro R . Human islet isolation and allotransplantation in 22 consecutive cases. Transplantation. 1992; 53(2):407-14. PMC: 2967200. DOI: 10.1097/00007890-199202010-00027. View

5.
Maldonado R, LaMothe R, Ferrari J, Zhang A, Rossi R, Kolte P . Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. Proc Natl Acad Sci U S A. 2014; 112(2):E156-65. PMC: 4299193. DOI: 10.1073/pnas.1408686111. View