» Articles » PMID: 36739275

Direct Observation of Accelerating Hydrogen Spillover Via Surface-lattice-confinement Effect

Overview
Journal Nat Commun
Specialty Biology
Date 2023 Feb 4
PMID 36739275
Authors
Affiliations
Soon will be listed here.
Abstract

Uncovering how hydrogen transfers and what factors control hydrogen conductivity on solid surface is essential for enhancing catalytic performance of H-involving reactions, which is however hampered due to the structural complexity of powder catalysts, in particular, for oxide catalysts. Here, we construct stripe-like MnO(001) and grid-like MnO(001) monolayers on Pt(111) substrate and investigate hydrogen spillover atop. Atomic-scale visualization demonstrates that hydrogen species from Pt diffuse unidirectionally along the stripes on MnO(001), whereas it exhibits an isotropic pathway on MnO(001). Dynamic surface imaging in H atmosphere reveals that hydrogen diffuses 4 times more rapidly on MnO than the case on MnO, which is promoted by one-dimension surface-lattice-confinement effect. Theoretical calculations indicate that a uniform and medium O-O distance favors hydrogen diffusion while low-coordinate surface O atom inhibits it. Our work illustrates the surface-lattice-confinement effect of oxide catalysts on hydrogen spillover and provides a promising route to improve the hydrogen spillover efficiency.

Citing Articles

Surface Structure Dependent Activation of Hydrogen over Metal Oxides during Syngas Conversion.

Bai B, Ye Y, Jiao F, Xiao J, Pan Y, Cai Z J Am Chem Soc. 2024; 146(50):34909-34915.

PMID: 39620729 PMC: 11669165. DOI: 10.1021/jacs.4c14395.


Probing Catalytic Sites and Adsorbate Spillover on Ultrathin FeO Film on Ir(111) during CO Oxidation.

Yin H, Yan Y, Fang W, Brune H ACS Nano. 2024; 18(9):7114-7122.

PMID: 38377596 PMC: 10919091. DOI: 10.1021/acsnano.3c11400.


Homolytic H dissociation for enhanced hydrogenation catalysis on oxides.

Yang C, Ma S, Liu Y, Wang L, Yuan D, Shao W Nat Commun. 2024; 15(1):540.

PMID: 38225230 PMC: 10789776. DOI: 10.1038/s41467-024-44711-7.

References
1.
Zhong J, Jin X, Meng L, Wang X, Su H, Yang Z . Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution. Nat Nanotechnol. 2016; 12(2):132-136. DOI: 10.1038/nnano.2016.241. View

2.
Sharp C, Bukowski B, Li H, Johnson E, Ilic S, Morris A . Nanoconfinement and mass transport in metal-organic frameworks. Chem Soc Rev. 2021; 50(20):11530-11558. DOI: 10.1039/d1cs00558h. View

3.
Jiang L, Liu K, Hung S, Zhou L, Qin R, Zhang Q . Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts. Nat Nanotechnol. 2020; 15(10):848-853. DOI: 10.1038/s41565-020-0746-x. View

4.
Wang S, Zhao Z, Chang X, Zhao J, Tian H, Yang C . Activation and Spillover of Hydrogen on Sub-1 nm Palladium Nanoclusters Confined within Sodalite Zeolite for the Semi-Hydrogenation of Alkynes. Angew Chem Int Ed Engl. 2019; 58(23):7668-7672. DOI: 10.1002/anie.201903827. View

5.
Carrillo A, Gonzalez-Aguilar J, Romero M, Coronado J . Solar Energy on Demand: A Review on High Temperature Thermochemical Heat Storage Systems and Materials. Chem Rev. 2019; 119(7):4777-4816. DOI: 10.1021/acs.chemrev.8b00315. View