Wu Y, Jia M, Fang Y, Duangthip D, Chu C, Gao S
BMC Oral Health. 2025; 25(1):389.
PMID: 40089762
DOI: 10.1186/s12903-025-05768-y.
Vlontzou M, Athanasiou M, Dalakleidi K, Skampardoni I, Davatzikos C, Nikita K
Sci Rep. 2025; 15(1):8410.
PMID: 40069342
PMC: 11897299.
DOI: 10.1038/s41598-025-92577-6.
Gu Z, Liu S, Ma H, Long Y, Jiao X, Gao X
JMIR Aging. 2025; 8:e64148.
PMID: 40009844
PMC: 11904384.
DOI: 10.2196/64148.
Richter-Laskowska M, Sobotnicka E, Bednorz A
Sci Rep. 2025; 15(1):6564.
PMID: 39994339
PMC: 11850844.
DOI: 10.1038/s41598-025-90460-y.
Wu Q, Kiakou D, Mueller K, Kohler W, Schroeter M
Neuroimage Clin. 2025; 45:103757.
PMID: 39983552
PMC: 11889731.
DOI: 10.1016/j.nicl.2025.103757.
Predicting dementia in Parkinson's disease on a small tabular dataset using hybrid LightGBM-TabPFN and SHAP.
Tran V, Byeon H
Digit Health. 2025; 10:20552076241272585.
PMID: 39968191
PMC: 11833816.
DOI: 10.1177/20552076241272585.
Explainable artificial intelligence for neuroimaging-based dementia diagnosis and prognosis.
Martin S, Zhao A, Qu J, Imms P, Imms P, Irimia A
medRxiv. 2025; .
PMID: 39867413
PMC: 11759246.
DOI: 10.1101/2025.01.13.25320382.
Functional Connectivity and MRI Radiomics Biomarkers of Cognitive and Brain Reserve in Post-Stroke Cognitive Impairment Prediction-A Study Protocol.
Dragos H, Stan A, Popa L, Pintican R, Feier D, Draghici N
Life (Basel). 2025; 15(1).
PMID: 39860071
PMC: 11767096.
DOI: 10.3390/life15010131.
Enhancing AI reliability: A foundation model with uncertainty estimation for optical coherence tomography-based retinal disease diagnosis.
Peng Y, Lin A, Wang M, Lin T, Liu L, Wu J
Cell Rep Med. 2024; 6(1):101876.
PMID: 39706192
PMC: 11866418.
DOI: 10.1016/j.xcrm.2024.101876.
Development and validation of a multimodal deep learning framework for vascular cognitive impairment diagnosis.
Fan F, Song H, Jiang J, He H, Sun D, Xu Z
iScience. 2024; 27(10):110945.
PMID: 39391736
PMC: 11465129.
DOI: 10.1016/j.isci.2024.110945.
AI-based differential diagnosis of dementia etiologies on multimodal data.
Xue C, Kowshik S, Lteif D, Puducheri S, Jasodanand V, Zhou O
Nat Med. 2024; 30(10):2977-2989.
PMID: 38965435
PMC: 11485262.
DOI: 10.1038/s41591-024-03118-z.
Healthy aging meta-analyses and scoping review of risk factors across Latin America reveal large heterogeneity and weak predictive models.
Ibanez A, Maito M, Botero-Rodriguez F, Fittipaldi S, Coronel C, Migeot J
Nat Aging. 2024; 4(8):1153-1165.
PMID: 38886210
PMC: 11333291.
DOI: 10.1038/s43587-024-00648-6.
Interpretable machine learning framework to predict gout associated with dietary fiber and triglyceride-glucose index.
Cao S, Hu Y
Nutr Metab (Lond). 2024; 21(1):25.
PMID: 38745171
PMC: 11092237.
DOI: 10.1186/s12986-024-00802-2.
Constructing personalized characterizations of structural brain aberrations in patients with dementia using explainable artificial intelligence.
Leonardsen E, Persson K, Grodem E, Dinsdale N, Schellhorn T, Roe J
NPJ Digit Med. 2024; 7(1):110.
PMID: 38698139
PMC: 11066104.
DOI: 10.1038/s41746-024-01123-7.
AI-based differential diagnosis of dementia etiologies on multimodal data.
Xue C, Kowshik S, Lteif D, Puducheri S, Jasodanand V, Zhou O
medRxiv. 2024; .
PMID: 38585870
PMC: 10996713.
DOI: 10.1101/2024.02.08.24302531.
Prediction of positive pulmonary nodules based on machine learning algorithm combined with central carbon metabolism data.
Liu J, Shen W, Qin Q, Li J, Li X, Liu M
J Cancer Res Clin Oncol. 2024; 150(2):33.
PMID: 38270703
PMC: 10811045.
DOI: 10.1007/s00432-024-05610-y.
Interpretable machine learning for predicting chronic kidney disease progression risk.
Zheng J, Li X, Zhu J, Guan S, Zhang S, Wang W
Digit Health. 2024; 10:20552076231224225.
PMID: 38235416
PMC: 10793198.
DOI: 10.1177/20552076231224225.
A neuroimaging biomarker for Individual Brain-Related Abnormalities In Neurodegeneration (IBRAIN): a cross-sectional study.
Zhao K, Chen P, Alexander-Bloch A, Wei Y, Dyrba M, Yang F
EClinicalMedicine. 2023; 65:102276.
PMID: 37954904
PMC: 10632687.
DOI: 10.1016/j.eclinm.2023.102276.
Dementia prediction in the general population using clinically accessible variables: a proof-of-concept study using machine learning. The AGES-Reykjavik study.
Twait E, Andaur Navarro C, Gudnason V, Hu Y, Launer L, Geerlings M
BMC Med Inform Decis Mak. 2023; 23(1):168.
PMID: 37641038
PMC: 10463542.
DOI: 10.1186/s12911-023-02244-x.
Challenges of implementing computer-aided diagnostic models for neuroimages in a clinical setting.
Leming M, Bron E, Bruffaerts R, Ou Y, Iglesias J, Gollub R
NPJ Digit Med. 2023; 6(1):129.
PMID: 37443276
PMC: 10345121.
DOI: 10.1038/s41746-023-00868-x.