» Articles » PMID: 36729180

Critical Analysis of Hydrogen Production by Aqueous Methanol Sonolysis

Overview
Publisher Springer
Specialty Chemistry
Date 2023 Feb 2
PMID 36729180
Authors
Affiliations
Soon will be listed here.
Abstract

Recently, several experimental and theoretical studies have demonstrated the feasibility of enhancing the sonochemical production of hydrogen via methanol pyrolysis within acoustic cavitation bubbles (i.e. sonolysis of aqueous methanol solution). This review includes both the experimental and theoretical achievements in the field of hydrogen production by methanol sonolysis. Additionally, the limits of the process's applicability and plausible solutions are highlighted. The impact of different parameters influencing the process performance is discussed. Finally, the effects of methanol concentration on the size distribution of active cavitation bubbles are analyzed.

Citing Articles

Ultrasonic Activation of Persulfate for the Removal of BPA in 20, 28, and 300 kHz Systems.

Jun B, Choi J, Son Y Ultrason Sonochem. 2025; 114:107281.

PMID: 39983292 PMC: 11891710. DOI: 10.1016/j.ultsonch.2025.107281.


Thermal and Sono-Aqueous Reforming of Alcohols for Sustainable Hydrogen Production.

Kee C, Zheng J, Yap W, Ou Yong R, Liu Y Molecules. 2024; 29(20).

PMID: 39459238 PMC: 11510399. DOI: 10.3390/molecules29204867.


The Recent Progresses of Electrodes and Electrolysers for Seawater Electrolysis.

Zhang F, Zhou J, Chen X, Zhao S, Zhao Y, Tang Y Nanomaterials (Basel). 2024; 14(3).

PMID: 38334510 PMC: 10856650. DOI: 10.3390/nano14030239.

References
1.
Merouani S, Hamdaoui O, Rezgui Y, Guemini M . Theoretical estimation of the temperature and pressure within collapsing acoustical bubbles. Ultrason Sonochem. 2013; 21(1):53-9. DOI: 10.1016/j.ultsonch.2013.05.008. View

2.
Yasui K, Tuziuti T, Lee J, Kozuka T, Towata A, Iida Y . The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions. J Chem Phys. 2008; 128(18):184705. DOI: 10.1063/1.2919119. View

3.
Merouani S, Hamdaoui O, Saoudi F, Chiha M . Influence of experimental parameters on sonochemistry dosimetries: KI oxidation, Fricke reaction and H2O2 production. J Hazard Mater. 2010; 178(1-3):1007-14. DOI: 10.1016/j.jhazmat.2010.02.039. View

4.
Kanthale P, Ashokkumar M, Grieser F . Sonoluminescence, sonochemistry (H2O2 yield) and bubble dynamics: frequency and power effects. Ultrason Sonochem. 2007; 15(2):143-50. DOI: 10.1016/j.ultsonch.2007.03.003. View

5.
Merouani S, Hamdaoui O, Rezgui Y, Guemini M . Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases. Ultrason Sonochem. 2014; 22:41-50. DOI: 10.1016/j.ultsonch.2014.07.011. View