6.
Lesperance D, Broderick N
. Meta-analysis of Diets Used in Microbiome Research and Introduction of the Dietary Composition Calculator (DDCC). G3 (Bethesda). 2020; 10(7):2207-2211.
PMC: 7341119.
DOI: 10.1534/g3.120.401235.
View
7.
Hemingway J, Hawkes N, McCarroll L, Ranson H
. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol. 2004; 34(7):653-65.
DOI: 10.1016/j.ibmb.2004.03.018.
View
8.
Chatterjee S, Prados-Rosales R, Frases S, Itin B, Casadevall A, Stark R
. Using solid-state NMR to monitor the molecular consequences of Cryptococcus neoformans melanization with different catecholamine precursors. Biochemistry. 2012; 51(31):6080-8.
PMC: 3448835.
DOI: 10.1021/bi300325m.
View
9.
Hardstone M, Leichter C, Scott J
. Multiplicative interaction between the two major mechanisms of permethrin resistance, kdr and cytochrome P450-monooxygenase detoxification, in mosquitoes. J Evol Biol. 2009; 22(2):416-23.
DOI: 10.1111/j.1420-9101.2008.01661.x.
View
10.
Rahman R, Souza B, Uddin I, Carrara L, Brito L, Costa M
. Insecticide resistance and underlying targets-site and metabolic mechanisms in Aedes aegypti and Aedes albopictus from Lahore, Pakistan. Sci Rep. 2021; 11(1):4555.
PMC: 7907206.
DOI: 10.1038/s41598-021-83465-w.
View
11.
Luna-Acosta A, Kanan R, Le Floch S, Huet V, Pineau P, Bustamante P
. Enhanced immunological and detoxification responses in Pacific oysters, Crassostrea gigas, exposed to chemically dispersed oil. Water Res. 2011; 45(14):4103-18.
DOI: 10.1016/j.watres.2011.05.011.
View
12.
Yahouedo G, Chandre F, Rossignol M, Ginibre C, Balabanidou V, Mendez N
. Contributions of cuticle permeability and enzyme detoxification to pyrethroid resistance in the major malaria vector Anopheles gambiae. Sci Rep. 2017; 7(1):11091.
PMC: 5593880.
DOI: 10.1038/s41598-017-11357-z.
View
13.
Wood O, Hanrahan S, Coetzee M, Koekemoer L, Brooke B
. Cuticle thickening associated with pyrethroid resistance in the major malaria vector Anopheles funestus. Parasit Vectors. 2010; 3:67.
PMC: 2924294.
DOI: 10.1186/1756-3305-3-67.
View
14.
Muthukrishnan S, Mun S, Noh M, Geisbrecht E, Arakane Y
. Insect Cuticular Chitin Contributes to Form and Function. Curr Pharm Des. 2020; 26(29):3530-3545.
PMC: 7755156.
DOI: 10.2174/1381612826666200523175409.
View
15.
Smith L, Silva J, Chen C, Harrington L, Scott J
. Fitness costs of individual and combined pyrethroid resistance mechanisms, kdr and CYP-mediated detoxification, in Aedes aegypti. PLoS Negl Trop Dis. 2021; 15(3):e0009271.
PMC: 7990171.
DOI: 10.1371/journal.pntd.0009271.
View
16.
Nappi A, Christensen B
. Melanogenesis and associated cytotoxic reactions: applications to insect innate immunity. Insect Biochem Mol Biol. 2005; 35(5):443-59.
DOI: 10.1016/j.ibmb.2005.01.014.
View
17.
Remy C, Fouilhe N, Barba I, Lahrech H, Cucurella M, Izquierdo M
. Evidence that mobile lipids detected in rat brain glioma by 1H nuclear magnetic resonance correspond to lipid droplets. Cancer Res. 1997; 57(3):407-14.
View
18.
Zhong J, Frases S, Wang H, Casadevall A, Stark R
. Following fungal melanin biosynthesis with solid-state NMR: biopolymer molecular structures and possible connections to cell-wall polysaccharides. Biochemistry. 2008; 47(16):4701-10.
DOI: 10.1021/bi702093r.
View
19.
Cornet S, Gandon S, Rivero A
. Patterns of phenoloxidase activity in insecticide resistant and susceptible mosquitoes differ between laboratory-selected and wild-caught individuals. Parasit Vectors. 2014; 6(1):315.
PMC: 3819646.
DOI: 10.1186/1756-3305-6-315.
View
20.
Kasai S, Komagata O, Itokawa K, Shono T, Ng L, Kobayashi M
. Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism. PLoS Negl Trop Dis. 2014; 8(6):e2948.
PMC: 4063723.
DOI: 10.1371/journal.pntd.0002948.
View