» Articles » PMID: 36710503

Bacterial Delivery of Therapeutic Proteins to the Nuclei of Cancer Cells

Overview
Publisher Wiley
Specialty Biochemistry
Date 2023 Jan 30
PMID 36710503
Authors
Affiliations
Soon will be listed here.
Abstract

Targeting nucleic targets with therapeutic proteins would enhance the treatment of hard-to-treat cancers. However, exogenous proteins are excluded from the nucleus by both the cellular and nuclear membranes. We have recently developed Salmonella that deliver active proteins into the cytoplasm of cancer cells. Here, we hypothesized that bacterially delivered proteins accumulate within nuclei, nuclear localization sequences (NLSs) increase delivery, and bacterially delivered proteins kill cancer cells. To test this hypothesis, we developed intranuclear delivering (IND) Salmonella and quantified the delivery of three model proteins. IND Salmonella delivered both ovalbumin and green fluorescent protein to nuclei of MCF7 cancer cells. The amount of protein in nuclei was linearly dependent on the amount delivered to the cytoplasm. The addition of a NLSs increased both the amount of protein in each nucleus and the number of nuclei that received protein. Delivery of Omomyc, a protein inhibitor of the nuclear transcript factor, Myc, altered cell physiology, and significantly induced cell death. These results show that IND Salmonella deliver functional proteins to the nucleus of cancerous cells. Extending this method to other transcription factors will increase the number of accessible targets for cancer therapy.

Citing Articles

MYC in cancer: from undruggable target to clinical trials.

Whitfield J, Soucek L Nat Rev Drug Discov. 2025; .

PMID: 39972241 DOI: 10.1038/s41573-025-01143-2.

References
1.
Dang C, Lee W . Identification of the human c-myc protein nuclear translocation signal. Mol Cell Biol. 1988; 8(10):4048-54. PMC: 365473. DOI: 10.1128/mcb.8.10.4048-4054.1988. View

2.
Di L . Strategic approaches to optimizing peptide ADME properties. AAPS J. 2014; 17(1):134-43. PMC: 4287298. DOI: 10.1208/s12248-014-9687-3. View

3.
Raman V, Van Dessel N, OConnor O, Forbes N . The motility regulator flhDC drives intracellular accumulation and tumor colonization of Salmonella. J Immunother Cancer. 2019; 7(1):44. PMC: 6373116. DOI: 10.1186/s40425-018-0490-z. View

4.
Cohen O, Granek R . Nucleus-targeted drug delivery: theoretical optimization of nanoparticles decoration for enhanced intracellular active transport. Nano Lett. 2014; 14(5):2515-21. DOI: 10.1021/nl500248q. View

5.
Bouvard C, Lim S, Ludka J, Yazdani N, Woods A, Chatterjee A . Small molecule selectively suppresses MYC transcription in cancer cells. Proc Natl Acad Sci U S A. 2017; 114(13):3497-3502. PMC: 5380033. DOI: 10.1073/pnas.1702663114. View