» Articles » PMID: 36703440

Observation of an Exotic State of Water in the Hydrophilic Nanospace of Porous Coordination Polymers

Overview
Journal Commun Chem
Publisher Springer Nature
Specialty Chemistry
Date 2023 Jan 27
PMID 36703440
Authors
Affiliations
Soon will be listed here.
Abstract

Fundamental understanding of the confinement of water in porous coordination polymers (PCPs) is important not only with respect to their application, such as in gas storage and separation, but also for exploring confinement effects in nanoscale spaces. Here, we report the observation of water in an exotic state in the well-designed hydrophilic nanopores of PCPs. Single-crystal X-ray diffraction finds that nanoconfined water has an ordered structure that is characteristic in ices, but infrared spectroscopy reveals a significant number of broken hydrogen bonds that is characteristic in liquids. We find that their structural properties are quite similar to those of solid-liquid supercritical water predicted in hydrophobic nanospace at extremely high pressure. Our results will open up not only new potential applications of water in an exotic state in PCPs to control chemical reactions, but also experimental systems to clarify the existence of solid-liquid critical points.

Citing Articles

Water motifs in zirconium metal-organic frameworks induced by nanoconfinement and hydrophilic adsorption sites.

Lamaire A, Wieme J, Vandenhaute S, Goeminne R, Rogge S, Van Speybroeck V Nat Commun. 2024; 15(1):9997.

PMID: 39557894 PMC: 11574101. DOI: 10.1038/s41467-024-54358-z.


Mild-Temperature Supercritical Water Confined in Hydrophobic Metal-Organic Frameworks.

Merchiori S, Le Donne A, Littlefair J, Lowe A, Yu J, Wu X J Am Chem Soc. 2024; 146(19):13236-13246.

PMID: 38701635 PMC: 11099966. DOI: 10.1021/jacs.4c01226.


Nanointerfaces: Concepts and Strategies for Optical and X-ray Spectroscopic Characterization.

Petit T, Lounasvuori M, Chemin A, Barmann P ACS Phys Chem Au. 2023; 3(3):263-278.

PMID: 37249937 PMC: 10214513. DOI: 10.1021/acsphyschemau.2c00058.


Ultrafast Water H-Bond Rearrangement in a Metal-Organic Framework Probed by Femtosecond Time-Resolved Infrared Spectroscopy.

Valentine M, Yin G, Oppenheim J, Dinca M, Xiong W J Am Chem Soc. 2023; 145(21):11482-11487.

PMID: 37201196 PMC: 10236489. DOI: 10.1021/jacs.3c01728.


The Consequences of Water Interactions with Nitrogen-Containing Carbonaceous Quantum Dots-The Mechanistic Studies.

Wisniewski M Int J Mol Sci. 2022; 23(22).

PMID: 36430767 PMC: 9694419. DOI: 10.3390/ijms232214292.


References
1.
Kerisit S, Liu C . Molecular simulations of water and ion diffusion in nanosized mineral fractures. Environ Sci Technol. 2009; 43(3):777-82. DOI: 10.1021/es8016045. View

2.
Kitaura R, Kitagawa S, Kubota Y, Kobayashi T, Kindo K, Mita Y . Formation of a one-dimensional array of oxygen in a microporous metal-organic solid. Science. 2002; 298(5602):2358-61. DOI: 10.1126/science.1078481. View

3.
Du , Superfine , Freysz , Shen . Vibrational spectroscopy of water at the vapor/water interface. Phys Rev Lett. 1993; 70(15):2313-2316. DOI: 10.1103/PhysRevLett.70.2313. View

4.
Brubach J, Mermet A, Filabozzi A, Gerschel A, Roy P . Signatures of the hydrogen bonding in the infrared bands of water. J Chem Phys. 2005; 122(18):184509. DOI: 10.1063/1.1894929. View

5.
Mochizuki K, Koga K . Solid-liquid critical behavior of water in nanopores. Proc Natl Acad Sci U S A. 2015; 112(27):8221-6. PMC: 4500255. DOI: 10.1073/pnas.1422829112. View