» Articles » PMID: 36697673

Advanced Preparation of Fragment Libraries Enabled by Oligonucleotide-modified 2',3'-dideoxynucleotides

Overview
Journal Commun Chem
Publisher Springer Nature
Specialty Chemistry
Date 2023 Jan 25
PMID 36697673
Authors
Affiliations
Soon will be listed here.
Abstract

The ever-growing demand for inexpensive, rapid, and accurate exploration of genomes calls for refinement of existing sequencing techniques. The development of next-generation sequencing (NGS) was a revolutionary milestone in genome analysis. While modified nucleotides already were inherent tools in sequencing and imaging, further modification of nucleotides enabled the expansion into even more diverse applications. Herein we describe the design and synthesis of oligonucleotide-tethered 2',3'-dideoxynucleotide (ddNTP) terminators bearing universal priming sites attached to the nucleobase, as well as their enzymatic incorporation and performance in read-through assays. In the context of NGS library preparation, the incorporation of ddNTP fulfills two requirements at once: the fragmentation step is integrated into the workflow and the obtained fragments are readily labeled by platform-specific adapters. DNA polymerases can incorporate ddNTP nucleotides, as shown by primer extension assays. More importantly, reading through the unnatural linkage during DNA synthesis was demonstrated, with 25-30% efficiency in single-cycle extension.

Citing Articles

Reactivity Profiling for High-Yielding Ynamine-Tagged Oligonucleotide Click Chemistry Bioconjugations.

Peschke F, Taladriz-Sender A, Watson A, Burley G Bioconjug Chem. 2024; 35(11):1788-1796.

PMID: 39385696 PMC: 11583209. DOI: 10.1021/acs.bioconjchem.4c00353.


A comprehensive review on resistance against cotton leaf curl virus.

Nadeem S, Ahmed S, Luqman T, Tan D, Maryum Z, Pervaiz Akhtar K Front Genet. 2024; 15:1306469.

PMID: 38440193 PMC: 10909863. DOI: 10.3389/fgene.2024.1306469.


Fusion sequencing via terminator-assisted synthesis (FTAS-seq) identifies TMPRSS2 fusion partners in prostate cancer.

Drazdauskiene U, Kapustina Z, Medziune J, Dubovskaja V, Sabaliauskaite R, Jarmalaite S Mol Oncol. 2023; 17(6):993-1006.

PMID: 37300660 PMC: 10257418. DOI: 10.1002/1878-0261.13428.


From molecules to genomic variations: Accelerating genome analysis via intelligent algorithms and architectures.

Alser M, Lindegger J, Firtina C, Almadhoun N, Mao H, Singh G Comput Struct Biotechnol J. 2022; 20:4579-4599.

PMID: 36090814 PMC: 9436709. DOI: 10.1016/j.csbj.2022.08.019.


Sensitive and accurate analysis of gene expression signatures enabled by oligonucleotide-labelled cDNA.

Kapustina Z, Medziune J, Dubovskaja V, Matjosaitis K, Zeimyte S, Lubys A RNA Biol. 2022; 19(1):774-780.

PMID: 35653374 PMC: 9191874. DOI: 10.1080/15476286.2022.2078093.

References
1.
Sharma V, Watts J . Oligonucleotide therapeutics: chemistry, delivery and clinical progress. Future Med Chem. 2015; 7(16):2221-42. DOI: 10.4155/fmc.15.144. View

2.
Welter M, Verga D, Marx A . Sequence-Specific Incorporation of Enzyme-Nucleotide Chimera by DNA Polymerases. Angew Chem Int Ed Engl. 2016; 55(34):10131-5. DOI: 10.1002/anie.201604641. View

3.
Balintova J, Plucnara M, Vidlakova P, Pohl R, Havran L, Fojta M . Benzofurazane as a new redox label for electrochemical detection of DNA: towards multipotential redox coding of DNA bases. Chemistry. 2013; 19(38):12720-31. DOI: 10.1002/chem.201301868. View

4.
Shendure J, Ji H . Next-generation DNA sequencing. Nat Biotechnol. 2008; 26(10):1135-45. DOI: 10.1038/nbt1486. View

5.
Routh A, Head S, Ordoukhanian P, Johnson J . ClickSeq: Fragmentation-Free Next-Generation Sequencing via Click Ligation of Adaptors to Stochastically Terminated 3'-Azido cDNAs. J Mol Biol. 2015; 427(16):2610-6. PMC: 4523409. DOI: 10.1016/j.jmb.2015.06.011. View