» Articles » PMID: 36697409

Efficient Pure Blue Hyperfluorescence Devices Utilizing Quadrupolar Donor-acceptor-donor Type of Thermally Activated Delayed Fluorescence Sensitizers

Overview
Journal Nat Commun
Specialty Biology
Date 2023 Jan 25
PMID 36697409
Authors
Affiliations
Soon will be listed here.
Abstract

The hyperfluorescence (HF) system has drawn great attention in display technology. However, the energy loss mechanism by low reverse intersystem crossing rate (k) and the Dexter energy transfer (DET) channel is still challenging. Here, we demonstrate that this can be mitigated by the quadrupolar donor-acceptor-donor (D-A-D) type of thermally activated delayed fluorescence (TADF) sensitizer materials, DBA-DmICz and DBA-DTMCz. Further, the HF device with DBA-DTMCz and ν-DABNA exhibited 43.9% of high maximum external quantum efficiency (EQE) with the Commission Internationale de l'Éclairage coordinates of (0.12, 0.16). The efficiency values recorded for the device are among the highest reported for HF devices. Such high efficiency is assisted by hindered DET process through i) high k, and ii) shielded lowest unoccupied molecular orbital with the presence of two donors in D-A-D type of skeleton. Our current study provides an effective way of designing TADF sensitizer for future HF technology.

Citing Articles

Microwave-Assisted Buchwald-Hartwig Double Amination: A Rapid and Promising Approach for the Synthesis of TADF Compounds.

Mohd Jamel N, Skhirtladze L, Hussein A, Ma Y, Woon K, Abdulwahab M ACS Omega. 2025; 9(51):50446-50457.

PMID: 39741864 PMC: 11684481. DOI: 10.1021/acsomega.4c07563.


A perspective on next-generation hyperfluorescent organic light-emitting diodes.

Deori U, Nanda G, Murawski C, Rajamalli P Chem Sci. 2024; .

PMID: 39444559 PMC: 11494416. DOI: 10.1039/d4sc05489j.


Longevity gene responsible for robust blue organic materials employing thermally activated delayed fluorescence.

Meng Q, Wang R, Wang Y, Guo X, Liu Y, Wen X Nat Commun. 2023; 14(1):3927.

PMID: 37400475 PMC: 10318018. DOI: 10.1038/s41467-023-39697-7.


Forthcoming hyperfluorescence display technology: relevant factors to achieve high-performance stable organic light emitting diodes.

Gawale Y, Ansari R, Naveen K, Kwon J Front Chem. 2023; 11:1211345.

PMID: 37377883 PMC: 10291061. DOI: 10.3389/fchem.2023.1211345.

References
1.
Hatakeyama T, Shiren K, Nakajima K, Nomura S, Nakatsuka S, Kinoshita K . Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Efficient HOMO-LUMO Separation by the Multiple Resonance Effect. Adv Mater. 2016; 28(14):2777-81. DOI: 10.1002/adma.201505491. View

2.
Samanta P, Kim D, Coropceanu V, Bredas J . Up-Conversion Intersystem Crossing Rates in Organic Emitters for Thermally Activated Delayed Fluorescence: Impact of the Nature of Singlet vs Triplet Excited States. J Am Chem Soc. 2017; 139(11):4042-4051. DOI: 10.1021/jacs.6b12124. View

3.
Jakoby M, Heidrich S, Graf von Reventlow L, Degitz C, Madayanad Suresh S, Zysman-Colman E . Method for accurate experimental determination of singlet and triplet exciton diffusion between thermally activated delayed fluorescence molecules. Chem Sci. 2021; 12(3):1121-1125. PMC: 8179038. DOI: 10.1039/d0sc05190j. View

4.
Furukawa T, Nakanotani H, Inoue M, Adachi C . Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion of triplet excitons in OLEDs. Sci Rep. 2015; 5:8429. PMC: 4325339. DOI: 10.1038/srep08429. View

5.
Cravcenco A, Ye C, Grafenstein J, Borjesson K . Interplay between Förster and Dexter Energy Transfer Rates in Isomeric Donor-Bridge-Acceptor Systems. J Phys Chem A. 2020; 124(36):7219-7227. DOI: 10.1021/acs.jpca.0c05035. View